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Abstract 

The reactions of (S)-2-(1,8-naphthalimido)propanoic acid (HL ala), and (S)-2-(1,8-

naphthalimido)-3-hydroxypropanoic acid (HL ser), protonated forms of ligands that 

contain a carboxylate donor group, an enantiopure chiral center and a 1,8-naphthalimide 

π...π stacking supramolecular tecton and in the case of HL ser an alcohol functional group, 

with the appropriate alkali metal hydroxide followed by a variety of crystallization 

methods leads to the formation of crystalline K(L ala)(MeOH) (1), K(L ala)(H2O) (2), 

Na(L ala)(H2O) (3), KL ser (4), CsL ser (5) and CsL ala (6). Each of these new complexes has 

a solid state structure based on six-coordinate metals linked into homochiral helical rod 

SBU central cores.  In addition to the bonding of the carboxylate and solvent (in the case 

of L ser the ligand alcohol) to the metals, both oxygens on the 1,8-naphthalimide act as 

donor groups.  One naphthalimide oxygen bonds to the same helical rod SBU as the 

carboxylate group of that ligand forming a chelate ring. The other naphthalimide oxygen 

bonds to adjacent SBUs. In complexes 1-3, this inter-rod link has a square arrangement 

bonding four other rods forming a three-dimensional enantiopure MOF structure, 

whereas in 4-6 this link has a linear arrangement bonding two other rods forming a two-

dimensional, sheet structure. In the latter case, the third dimension is supported 

exclusively by interdigitated π…π stacking interactions of the naphthalimide 

supramolecular tecton, forming enantiopure supramolecular MOF solids. Compounds 1-3 

lose the coordinated solvent when heating above 100 °C. For 1, the polycrystalline 

powder reverts to 1 only by recrystallization from methanol, whereas compounds 2 and 3
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undergo gas/solid, single-crystal to single-crystal transformations to form dehydrated 

compounds 2* and 3*, and rehydration occurs when crystals of these new complexes are 

left out in air. The reversible single-crystal to single-crystal transformation of 2 involves 

the dissociation/coordination of a terminal water ligand, but the case of 3 is remarkable 

considering the water that is lost is the only bridging ligand between the metals in the 

helical rod SBU and a carboxylate oxygen that is a terminal ligand in 3 moves into a 

bridging position in 3* to maintain the homochiral helical rods. Both 2* and 3* contain 

five-coordinate metals. There are no coordinated solvents in compounds 4-6, in two cases 

by designed ligand modification, which allows them to have high thermal stability. 

Compounds 1-3 did not exhibit observable SHG efficiency at an incident wavelength of 

1064 nm, but compounds 4-6 did exhibit modest SHG efficiency for MOF-like 

compounds in the range of 30 x α-SiO2. 

The reactions of the potassium salts of the ligands (S)-2-(1,8-

naphthalimido)propanoate (KL ala) and (S)-2-(1,8-naphthalimido)-3-hydroxypropanoate 

(KL ser) and (R)-2-(1,8-naphthalimido)propanoate (KL ala* ), enantiopure carboxylate 

ligands containing a 1,8-naphthalimide π...π stacking supramolecular tecton and in the 

case of L ser
-
  an alcohol functional group, with calcium or strontium nitrate under 

solvothermal conditions produce crystalline [Ca(Lala)2(H2O)]·(H2O) (1), 

[Ca(L ser)2]·(H2O)2 (2), [Sr(L ala)2(H2O)]·(H2O)3 (3), [Sr(L ala* )2(H2O)]·(H2O)3 (3*) and 

[Sr(L ser)2(H2O)] (5). Placing 3 under vacuum removes the interstitial waters to produce 

[Sr(L ala)2(H2O)] (4) in a single-crystal to single-crystal transformation; introduction of 

water vapor to 4 leads to the reformation of crystalline 3. Each of these new complexes 

has a solid-state structure based on homochiral rod secondary building units (SBUs) 
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central cores. Supramolecular π…π stacking interactions between 1,8-naphthalimide rings 

link adjacent rod SBUs into 3D structures for 1, 3, 4 and 5 and 2D structure for 2. 

Compounds 1 and 3 have open 1D channels along the crystallographic c axis that are 

occupied by disordered solvent. For 3, these channels close and open in the reversible 

single-crystal conversion to 4; the π…π stacking interactions of the naphthalimide rings 

facilitate this process by rotating and slipping. IR spectroscopy demonstrated that the 

rehydration of 4 with D2O leads to 3d8 and the process of dehydration and rehydration of 

3d8 with H2O leads to 3, thus showing exchange of the coordinated water in this process. 

These forms of 3 and 4 were characterized by 1H, 2H and 13C solid-state NMR 

spectroscopy and thermal and luminescence data are reported on all of the complexes. 

The reactions of (1,8-naphthalimido)ethanoic acid (HL gly), and (S)-2-(1,8-

naphthalimido)-3-hydroxypropanoic acid (HL ser), protonated forms of ligands that 

contain a carboxylate donor group and a 1,8-naphthalimide π...π stacking supramolecular 

tecton, with cesium hydroxide followed by solvothermal treatment in ethanol led to the 

formation of crystalline Cs(L gly) (1) and Cs(L ene) (2), where the L ene
- ligand, 2-(1,8-

naphthalimido)acrylate, is formed from the dehydration of the HL ser starting material.  

The X-ray studies show that 1 crystallizes in the monoclinic space group C2/c with unit 

cell dimensions a = 30.430(7) Å, b = 4.9820(12) Å, c = 16.566(4) Å, β = 101.951(4)o and 

2 in the monoclinic space group P21/n with unit cell dimensions a = 13.6049(15) Å, b = 

6.8100(8) Å, c = 14.4187(16) Å, β = 105.345(2)o. The solid state structure of 1 contains 

two types of 6-coordinate cesium cations linked into sheets by bridging carboxylate 

oxygen atoms. One cation has a distorted octahedral environment, while the other is in an 

unusual planar, hexagonal O6-coordination geometry.  The latter geometry is stabilized 
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on both sides of the plane by η2-coordination of naphthalimide rings.  The 1,8-

naphthalimide rings are involved in intra-sheet π…π stacking interactions.  The O6 

coordination sphere of complex 2 is distorted and only half-filled with the oxygen atoms, 

which link the cations into rods that are further linked into sheets by bridging interactions 

of naphthalimide carbonyls with cesium cations from adjacent rods.  The open face on 

the cation has unique η2:η1 interactions with two methylene groups in the ligands.  These 

sheets are linked into a 3D supramolecular structure by interdigitated 1,8-naphthalimide 

rings involved in strong π…π interactions.  Both complexes show naphthalimide based 

fluorescence. 

The reactions of the lithium salt of (S)-2-(1,8-naphthalimido)-3-hydroxypropanoate 

(L ser
-), an enantiopure carboxylate ligand containing a 1,8-naphthalimide π...π stacking 

supramolecular tecton and an alcohol functional group, with La(NO3)3, Ce(NO3)3, SmCl3, 

Eu(NO3)3, Gd(NO3)3, Tb(NO3)3 and Dy(NO3)3 under solvothermal conditions 

(water/ethanol) produced single crystals (characterized by single crystal X-ray 

crystallography) of [La3(L ser)8(OH)(H2O)]•(H2O, EtOH)x (1), 

[Ce3(L ser)8(OH)(H2O)]•(H2O, EtOH)x (2), [Sm3(L ser)8(OEt)]•(H2O, EtOH)x (3), 

[Eu3(L ser)8(OEt)]•(H2O, EtOH)x (4), [Gd3(L ser)8(OEt)]•(H2O, EtOH)x (5), 

[Tb3(L ser)8(OEt)]•(H2O, EtOH)x (6) and [Dy3(L ser)8(OEt)]•(H2O, EtOH)x (7), 

respectively.  Mixed-metal complexes [Ce2.3Tb0.7(L ser)8(OH)]•(H2O, EtOH)x (8), 

[Gd0.4Tb2.6 (L ser)8(OEt)]•(H2O, EtOH)x (9) and [Ce1.4Gd0.3Tb1.3(L ser)8(OH)]•(H2O, 

EtOH)x (10) were prepared by using two or more types of lanthanides in the solvothermal 

reactions (additional mixed-metal complexes were prepared and characterized by ICP-

MS).  Single crystals of compounds 1-10 are isostructural: trinuclear, carboxylate-bonded 
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helicates organized by the noncovalent, π...π stacking interactions of the 1,8-

naphthalimide groups into intertwined M helices, with a pitch of 56 Å, that are further 

arranged into a three dimensional supramolecular framework by additional π...π stacking 

interactions. Magnetic measurements of several compounds were as expected for the 

metal(s) present, indicating no significant interactions between metals within the 

helicates. The Ce complex 2 showed weak antiferromagnetic ordering below 50 K.  All 

of the complexes, with the exception of 2, showed luminescence based on the 1,8-

naphthalimide group.  Complex 2 has no emission and complexes with mixed Ce/Tb 

ratios showed significant quenching of the naphthalimide-based luminescence, as 

quantitated with solid state, absolute quantum yield measurements of these mixed-metal 

and the pure metal complexes. Lanthanide based luminescence was only observed for the 

Eu complex 4. 

The new ligand 5-(1,8-naphthalimido)isophthalate (L 135
2-), containing two 

carboxylate donor groups and the 1,8-naphthalimide supramolecular tecton, has been 

used under solvothermal conditions to prepare a series of group 2, lanthanide and actinide 

metal complexes: [Ca4(L135)4(H2O)8]·(H2O)9.5(DMF)2.6 (1), Ba(L 135)(H2O)1.5(DMF)0.5 (2), 

La2(L 135)3(DMF)4 (3), Ce2(L 135)3(DMF)4 (4), Eu2(L 135)3(DMF)4 (5), Tb2(L 135)3(DMF)4 

(6), [UO2(L 135)(DMF)]·(py)0.5(EtOH)0.5 (7) and Th(L 135)(NO3)2(DMF)2]·(DMF)2 (8). The 

solid state structure of the calcium complex 1 is based on helical rod-shaped secondary 

building-units (SBUs) of edge-shared polyhedra bridged by oxygens from the carboxylate 

groups. The crystals are racemic, with the one-dimensional (1D) helical rods organized 

by π…π stacking interactions of the naphthalimide group into a 3D supramolecular 

framework (SMOF) structure. Although the structure of the barium complex 2 also 
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contains rod-shaped SBUs, the rods are linked through the aryl backbone of the ditopic 

L 135
2- ligands into 2D sheets. The sheets are further engaged in naphthalimide π…π 

stacking interactions to build a 3D SMOF. The lanthanide complexes 3-6 are 

isostructural, based on binuclear SBUs linked by the ligands into a square-shaped grid 

pattern, with π-stacking interactions linking adjacent sheets to generate a 3D SMOF. The 

uranium(VI) complex 7 contains 7-coordinate pentagonal bipyramid uranyl cations 

bridged by the ligands into one dimensional ribbons. The solid state structure of the 

thorium(IV) complex 8 consists of 10-coordinate thorium cations, also bridged by the 

ligands into one dimensional ribbons.  Both of these actinide structures are organized into 

only 2D supramolecular sheets by π-stacking interactions. Compounds 1, 2, 3, 6 and 8 

exhibit solid-state luminescence dominated by the naphthalimide chromophore in the 

ligand.  The group 2 complexes are slightly red-shifted and the lanthanum complex 3 and 

the thorium complex 8 slightly blue-shifted with respect to the ligand. The terbium 

compound, 6, is greatly blue-shifted by ~75 nm and naphthalimide sensitization of the 

metal emission occurs for the europium complex 5. The cerium(III) and uranyl(VI) 

compounds 4 and 7 have no solid state emission. 
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Introduction  

The rational design of metal-organic frameworks (MOFs) with diverse 

architectures and functionalities is a major area for research because of the wide range of 

potential applications.1 Secondary building units (SBUs) are the core geometric building 

blocks of MOFs that are used to assemble desired structures when coupled with 

appropriately chosen bridging ligands.2 In addition to the covalent forces from which 

these network solids are built, supramolecular tectons (e.g. groups that can hydrogen 

bond or participate in π...π  stacking interactions) can be built into the organic ligands for 

added functionality and enhanced stability.3 

We recently designed a series of ligands with up to four functionalities derived 

from enantiopure amino acids and a 1,8-naphthalimide group (Scheme 1.1).4 The first 

functionality comes from the carboxylate anion that acts as a donor to the metal cations 

and helps constitute the SBU.2 The second is the chiral center from enantiopure amino 

acids, which imparts chirality on the crystal structure resulting in noncentrosymmetric 

space groups.4,5 The third key feature of the amino acid component is the “side chain” 

that can contain functional groups such as an alcohol or amide. The fourth, and probably 

most unique feature of the ligands is the 1,8-naphthalimide group that not only blocks the 

amine end of the acid from coordination,6 but has been shown to organize the 

supramolecular structure through directionally versatile and strong π…π stacking 

interactions.4,7,8 
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Scheme 1.1. Enantiopure Tri- and Tetrafunctional Ligands 

The majority of our previous research on metal complexes of these ligands has 

dealt with the square paddlewheel SBU adopted by late transition metals.7 These and 

related studies have demonstrated that ligands containing the 1,8-naphthalimide group 

have complex structures frequently organized in at least one dimension by 

supramolecular interactions, structural types that we have denoted as supramolecular 

metal-organic frameworks (SMOFs).7b  These SMOFs have shown very interesting 

properties, most notably a variety of single-crystal to single-crystal transformations; in 

one system gas/solid guest exchange takes place in densely packed solids,4a in another the 

gas/solid exchange is enantioselective with a racemic substrate,7a and in a third 

temperature induced phase changes are observed.4c  In order to investigate additional 

interesting trends and physical properties imparted by these ligands, we chose to look at 

complexes with group 1 metals. Although not as extensively studied in this field as 

transition metals, s-block metals are cheap, nontoxic, essential in many biological 

processes9 and their complexes have shown a wealth of interesting properties, ranging 

from catalysts10 to ferroelectrics.11 By using enantiopure ligands the new complexes can 

also have interesting nonlinear optical applications. Herein we report the syntheses and 

structures of eight alkali metal complexes of three different group 1 metals with the two 

ligands pictured in Scheme 1 along with their thermal, fluorescent and non-linear optical 

properties. In contrast to other studies with these metals,12 two very similar structural 

types have emerged from this study, both of which are based on homochiral rod SBUs, 
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despite changes in metals, ligands, and solvent systems. Two of these compounds are 

able to undergo reversible single-crystal to single-crystal transformations even though the 

solids lack channels. Some of these results have been communicated previously.13 

 

Experimental 

General Considerations. All reactants were used as purchased from Aldrich and 

Strem. The syntheses of the ligands HL ala and HL ser have been reported elsewhere.4c,8,13 

Elemental analyses were performed by Robertson Microlit Laboratories (Ledgewood, 

NJ). Thermalgravimetric analysis was performed using a Thermal Analysis (TA) 

SDTQ600 simultaneous DTA/TGA system. The samples were heated in dry air to 800 °C 

with a heating rate of 10 °C/min. Some samples (compounds 3 and 6) froth when heated 

too high, so the experiment was terminated after the decomposition temperature was 

recorded. The fluorescence measurements were done on a Perkin Elmer Lambda 35 UV-

vis spectrometer. 

K(Lala)(MeOH) (1). HL ala (2.0 g, 7.4 mmol) was added to a solution of potassium 

hydroxide (0.42 g, 7.4 mmol) in water and stirred for an hour until homogeneous. The 

solvent was removed and the precipitate dried in vacuo to produce a light brown powder 

(1.96 g). A 9 mL thick walled glass tube with a Teflon screw top was charged with a 

sample of this solid (0.10 g) and methanol (4 mL) and heated at 120 °C overnight or until 

the solution became homogeneous. The heat was removed and the system was allowed to 

slowly cool at a rate of about 1°C/min. The reaction vessel was placed in a quiet area. 

Over the course of 3 days large crystals grew from the solution and were collected from 
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the tube and washed with diethyl ether to provide 0.063 g of single crystals. Anal. Calcd. 

(Found) for C16H14KNO5: C 56.62 (56.42); H 4.16 (4.00); N 4.13 (3.97). 

 K(Lala)(H2O) (2). The light brown powder of KL ala (0.086 g, 0.28 mmol) was 

dissolved in water (1 mL) and acetone vapor was allowed to diffuse into the solution to 

yield X-ray quality single crystals (0.064 g) after 3 weeks. Anal. Calcd. (Found) for 

C15H14KNO5: C 55.37 (55.21); H 3.72 (3.58); N 4.31 (4.28). 

 Na(Lala)(H2O) (3). HL ala (1.30 g, 4.83 mmol) was added to a solution of sodium 

hydroxide (0.20 g, 5.0 mmol) in methanol (30 mL) and the stirred until homogeneous. 

The solution was filtered through a short celite plug. The solvent was removed and the 

resulting precipitated dried in vacuo to produce a pale orange powder (1.30 g). A 9 mL 

thick walled glass tube with a Teflon screw top was charged with the solid (0.05 g), a 

40:1 mixture of 1-butanol and water (4 mL) was added and heated at 120 °C overnight or 

until the solution became homogeneous. The heat was removed and the system was 

allowed to slowly cool at a rate of about 1°C/min. The reaction vessel was placed in a 

quiet area. Over the course of 2 days large crystals grew from the solution and were 

collected from the tube and washed with diethyl ether to provide 0.032 g of single 

crystals. Anal. Calcd. (Found) for C15H14NNaO5: C 58.26 (58.08); H 3.91 (3.93); N 4.53 

(4.44). 

 K(Lser) (4). HL ser (1.00 g, 3.5 mmol) was added to a solution of potassium 

hydroxide (0.20 g, 3.5 mmol) in water and stirred for an hour or until homogeneous. The 

solvent was removed and the precipitate dried in vacuo to produce a light brown powder 

(0.89 g). A 9 mL thick walled glass tube with a Teflon screw top was charged with the 

solid (0.05 g) and methanol (2.0 mL) and heated at 120 °C. Over the course of heating for 
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3 days, brown crystals grew on the walls of the tube above the solvent line. After no 

starting material remained at the bottom of the tube, the heat was removed and the system 

was allowed to slowly cool at a rate of about 1°C/min. Small dark brown crystals were 

collected from the walls of the tube and washed with diethyl ether to provide 0.032 g of 

single crystals. Anal. Calcd. (Found) for C15H10KNO5: C 55.72 (55.60); H 3.12 (3.22); N 

4.33 (4.21). 

 Cs(Lser) (5). This compound was prepared by the same procedure as for KL ser, but 

with CsOH·xH2O (0.50 g) and HL ser (0.72 g, 2.5 mmol) to provide a pale brown powder 

(1.02 g). Small dark brown crystals were collected from the walls of the tube and washed 

with diethyl ether to provide 0.031 g of single crystals. Anal. Calcd. (Found) for 

C15H10CsNO4: C 44.91 (44.38); H 2.51 (2.33); N 3.49 (3.31). 

Cs(Lala) (6). This compound was prepared by the same procedure as for KL ser, but 

with CsOH·xH2O (0.50 g) and HL ala (0.76 g, 2.5 mmol) to provide an orange powder 

(1.06 g). Small dark brown crystals were collected from the walls of the tube and washed 

with diethyl ether to provide 0.037 g of single crystals. Anal. Calcd. (Found) for 

C15H10CsNO5: C 43.19 (43.10); H 2.42 (2.31); N 3.36 (3.36). 

Second Harmonic Generation Studies. Powder SHG measurements were 

performed on a modified Kurtz-nonlinear optical (NLO) system using a pulsed Nd:YAG 

laser with a wavelength of 1064 nm.14   A detailed description of the equipment and 

methodology has been published.15 As the powder SHG efficiency has been shown to 

strongly depend on particle size,14 4, 5 and 6 were ground and sieved into distinct particle 

size ranges ( <20, 20–45, 45–63, 63–75, 75–90, >90 µm). Relevant comparisons with 

known SHG materials were made by grinding and sieving crystalline α−SiO2 and 
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LiNbO3 into the same particle size ranges. No index matching fluid was used in any of 

the experiments.  

Powder X-Ray Diffraction. In order to test for phase purity of the crystalline 

products, samples for compounds 1-5 were collected from the walls of the solvothermal 

tubes, washed with diethyl ether and ground in air. For compound 6 the single crystals 

were transported into a dry box and ground in a nitrogen atmosphere. A zero-background 

slide was loaded with the sample, covered with a Kapton film and sealed with high 

vacuum grease. All measurements were performed on a Rigaku Ultima 4 instrument 

using Cu Kα radiation at a scan rate of 1 °/min between 5 and 30 °2θ with a step size of 

0.02 °2θ. Powder patterns were analyzed using Microsoft Excel.  The powder pattern for 

6 initially indicated some lack of phase purity, but two additional short scans (10-15 °2θ 

at a scan rate of 2 °/min) were performed on compound 6, before and after the long scan 

and they show that compound 6 likely undergoes a change when ground. 

Recycling Experiments. The repeated single-crystal to single-crystal 

transformation of compound 3 to 3* was performed on two selected single crystals. These 

crystals were collected from the walls of the solvothermal tubes and washed with diethyl 

ether. After checking the unit cell, they were heated under vacuum to 150 °C for one hour 

in a Schlenk flask. The flask was refilled with nitrogen and the crystal quickly mounted 

in a nitrogen stream on the diffractometer; the unit cell parameters were collected and the 

diffraction peaks monitored for broadening to determine if compound 3* had formed and 

retained single crystallinity. These same two single crystals were then returned to a glass 

vial which was kept in a humid environment for two days and unit cell parameters 

collected to determine if compound 3 had reformed. This procedure was repeated; at the 
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end the single crystals started to show broadening in the diffraction pattern indicating 

some degradation had taken place.  

Crystallographic Studies. For all complexes, X-ray diffraction intensity data 

were measured at 100(2) K using a Bruker SMART APEX diffractometer (Mo Kα 

radiation, λ = 0.71073 Å).16 The raw area detector data frames were reduced with the 

SAINT+ program.16 Direct methods structure solution, difference Fourier calculations 

and full-matrix least-squares refinement against F2 were performed with SHELXS/L, 

implemented in OLEX2.17,18 Non-hydrogen atoms were refined with anisotropic 

displacement parameters. Hydrogen atoms bonded to carbon were placed in 

geometrically idealized positions and included as riding atoms. For compounds 1, 2, 2*, 

4, 5 and 6, crystal enantiopurity and the “S” configuration of the chiral carbon (C13 in all 

structures) were established by the absolute structure (Flack) parameters of zero (within 

experimental error) derived from the X-ray datasets. For 3 and 3*, containing no atoms 

heavier than sodium in the crystal, the absolute structures were inferred from synthetic 

information; i.e., enantiopure starting material which does not racemize. Details of data 

collection are given in Table 1.1. 
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Table 1.1. Crystallographic Data 

1 2 2* 3 3*

Formula C16H14KNO5 C15H12KNO5 C15H10.58KNO4.29 C15H12NaNO5 C15H10NaNO4

Fw, g mol
-1

339.38 325.36 312.58 309.25 291.23
Cryst. Syst. Orthorhombic Orthorhombic Orthorhombic Orthorhombic Orthorhombic

Space group P212121 P212121 P212121 P212121 P212121

T, K 100(2) K 100(2) K 100(2) K 100(2) K 100(2) K
a , Å 6.8979(5) 6.9520(7) 6.874(2) 6.9818(7) 6.9329(13)
b , Å 14.3515(10) 13.2676(13) 12.842(4) 11.8361(13) 12.061(2)
c , Å 14.5164(10) 14.9719(15) 15.052(4) 15.5125(17) 14.777(3)
α , deg 90 90 90 90 90
β , deg 90 90 90 90 90
γ , deg 90 90 90 90 90

V, Å
3

1437.05(18) 1381.0(2) 1328.8(7) 1281.9(2) 1235.5(4)
Z 4 4 4 4 4

R1(I >2σ (I )) 0.0277 0.0296 0.0439 0.0322 0.0522
wR2(I >2σ (I )) 0.0721 0.0748 0.1085 0.0830 0.1306

Flack Parameter 0.01(4) -0.03(4) 0.05(7) -0.2(3) 0.5(7)  

4 5 6

Formula C15H10KNO5 C15H10CsNO5 C15H10CsNO4

Fw, g mol
-1

323.34 417.15 401.15
Cryst. Syst. Monoclinic Monoclinic Monoclinic

Space group P21 P21 P21

T, K 100(2) K 100(2) K 100(2) K
a , Å 8.7050(5) 9.2965(12) 9.0674(6) 
b , Å 6.6081(4) 6.6108(9) 6.5650(5) 
c , Å 11.1731(7) 11.2603(15) 11.2571(8)
α , deg 90 90 90
β , deg 99.1048(10) 99.668(2) 95.2910(10) 
γ , deg 90 90 90

V, Å
3

634.62(7) 682.20(16) 667.25(8) 
Z 2 2 2

R1(I >2σ (I )) 0.0311 0.0233 0.0233
wR2(I >2σ (I )) 0.0819 0.0552 0.0546

Flack Parameter 0.03(3) 0.01(2) 0.037(16)  

Results 

Syntheses. The reaction of HL ala and HL ser with the appropriate alkali metal hydroxide 

(NaOH, KOH, CsOH) in water or methanol produced NaL ala, KL ala, CsLala, KL ser, and 
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CsL ser.  Crystals of K(L ala)(MeOH) (1) and Na(L ala)(H2O) (3) were obtained by heating 

the appropriate salt in an alcohol solution to 120° C followed by cooling. Crystals of 

KL ser (4), CsL ser (5), and CsL ala (6) were obtained by solvothermal treatment in alcohol 

solution at 120° C and grew on the walls of the reaction vessel above the solvent line. 

Dissolving KL ala in water followed by vapor diffusion of acetone into the solution 

afforded crystals of K(L ala)(H2O) (2). 

 

Structural Analyses. In K(L ala)(MeOH) (1), the potassium cation is 6-coordinate with 

two of the sites occupied by µ2-κ2 carboxylate oxygens, two by bridging methanols, and 

two by carbonyls from the naphthalimide rings (Figure 1.1). One of the naphthalimide 

carbonyls is coordinated to a potassium cation in the same chain as the bridging 

carboxylate oxygen of that ligand forming a seven-member chelate ring. The 

noncoordinated oxygen atom from the carboxylate participates in hydrogen bonding to 

the methanol bridging to the next potassium cation. The irregular potassium polyhedra 

are edge-shared through the bridging oxygen atoms originating from the methanol and 

carboxylate, extending in one dimension to generate helical rods. The helical rods are 

enantiopure, all P-handed helicies as defined by the K1-O3-K1-O3 chain (Figure 1.2) 

with a pitch of 6.90 Å. The second naphthalimide carbonyl of each ligand acts to bridge 

adjacent helices. These bridging naphthalimide carbonyls form four points of extension 

from each helical rod generating “squares” which are occupied by the naphthalimide 

rings (Figure 1.3), generating a three-dimensional uninodal 4c net structure.  

The naphthalimide rings form extended π…π stacking networks that reinforce the 

structure. Four parameters were chosen to define the strength of the naphthalimide π…π 
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stacking interaction: the dipole angle between the two rings, the angle between ring 

planes, the average perpendicular distance, and the slippage parameter (χ) that is defined 

as the third side of the right triangle formed with the average perpendicular distance 

between the two rings and the line between the two central carbon atoms of the rings. The 

values for these metrics, along with the angles formed by the dipole vectors of the rings, 

are listed in Table 1.2.  

 

Figure 1.1 The K+ coordination environment of K(L ala)(MeOH) (1); black C, red O, blue 
N, white H, orange K. 

 

Figure 1.2. (a) The rod-like structure of 1 formed by edge shared K+ polyhedra and (b) 
the P-handed helix highlighted in purple follows the K1-O3-K1-O3 chain. 
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Figure 1.3. View down the crystallographic a axis of 1 illustrating the four points of 
connectivity between rods, where each rod is a different color and the vertices of the 
square lie in the center of each helical rod.  

The structure of K(L ala)(H2O) (2) is very similar to 1 with the presence of 

homochiral helical rods of potassium cations and the uninodal 4c net, yet there are 

important differences in the coordination environment and helical connectivity. The 

potassium is 6-coordinate with three of the sites occupied by the µ2-κ1:κ2 carboxylate 

oxygens, one of the sites filled by a terminal water molecule, and the remaining two sites 

filled by two carbonyls from the naphthalimide rings (Figure 1.4). The terminal water 

molecule in 2 is hydrogen bonded to the carboxylate O3 involved with bridging the next 

two potassium cation of the helix. The distorted octahedral potassium polyhedra are 

corner-shared through the bridging carboxylate and extend in one dimension to generate 

helical rod SBUs. The P-handed helix defined by the K1-O3-K1-O3 chain is shown in 

Figure 1.5 and has a pitch of 6.95 Å. As with 1, one of the naphthalimide carbonyls is 

coordinated to a potassium cation in the same chain as the bridging carboxylate oxygen 

of that ligand forming a seven-member chelate ring, while the other acts to bridge an 

adjacent helix. The bridging mode of the naphthalimide carbonyls again creates four 
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points of extension per rod and the extended interdigitated π…π stacking are similar to 

compound 1 (Figure 1.6). The metrics for the π…π stacking are listed in Table 1.2. 

 

Figure 1.4. The K+ coordination environment of K(L ala)(H2O) (2) ; black C, red O, blue 
N, white H, orange K. 

 

Figure 1.5. (a) The rod-like structure of 2 formed by corner shared K+ polyhedra and (b) 
the P-handed helix highlighted in purple follows the K1-O3-K1-O3 chain. 
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Figure 1.6. View down the crystallographic a axis of K(L ala)(H2O) (2) illustrating the 
four points of connectivity between rods, where each rod is a different color and the 
vertices of the square lie in the center of each helical rod. 

Compound 2 undergoes a reversible single-crystal to single-crystal transformation 

at high temperatures by the loss of the coordinated water to form compound 2* (vide 

infra). The structure of the dehydrated complex is almost identical to the hydrated form 

with the exception of the coordination number of potassium changing from six to five 

(Figure 1.7) and a slight decrease in the unit cell volume (~3%). 

 

Figure 1.7. The K+ coordination environment of K(L ala) (2*); black C, red O, blue N, 
white H, orange K. 
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 Na(L ala)(H2O) (3) again has the same basic structure featuring homochiral helical 

rods of sodium and a uninodal 4c net, but with distinct differences in coordination and 

helical environment from either 1 or 2. Sodium is 6-coordinate with two of the sites 

occupied by a κ2 carboxylate, two of the sites filled by bridging water molecules, and the 

remaining two sites filled by two carbonyls from the naphthalimide rings (Figure 1.8). 

Compound 3 is the only example where the carboxylate does not act as a bridge and the 

intrachain chelate ring formed by one of the naphthalimide carbonyls involves a sodium 

located in the next segment of the helix forming nine-member rings. In a similar manner 

to the methanol in 1, the bridging water molecule in 3 is hydrogen bonded to the 

carboxylate O3, but in this case O3 is coordinated to sodium. The distorted octahedral 

sodium polyhedra are corner shared through the bridging water and extend in one 

dimension to generate helical rod SBUs (Figure 1.9). The P-handed helix is defined by 

the Na1-O5-Na1-O5 chain and has a pitch of 6.98 Å. Again, the second naphthalimide 

carbonyls of each ligand bridge to adjacent helices forming four points of extension per 

rod and extended interdigitated π…π stacking as in compounds 1 and 2 (Figure 1.10) is 

also present. The metrics for the π…π stacking are listed in Table 1.2. 

 

Figure 1.8. The Na+ coordination environment of Na(L ala)(H2O) (3) ; black C, red O, 
blue N, white H, yellow Na. 
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Figure 1.9. (a) The rod-like structure of 3 formed by corner shared Na+ polyhedra and (b) 
the P-handed helix highlighted in purple follows the Na1-O5-Na1-O5 chain. 

 

Figure 1.10. View down the crystallographic a axis of Na(L ala)(H2O) (3) illustrating the 
four points of connectivity between rods, where each rod is a different color and the 
vertices of the square lie in the center of each helical rod.  

 Compound 3 undergoes a reversible single-crystal to single-crystal transformation 

upon heating with loss of water to form compound 3* (vide infra) which was 

characterized by single crystal X-ray diffraction. Sodium is 5-coordinate in compound 3* 

with 3 of the sites occupied by the µ
2-κ1:κ2 carboxylate oxygens in a similar fashion to 

compound 2 and the remaining two sites are occupied by the carbonyls of the 



www.manaraa.com

 

17 
 

naphthalimide rings (Figure 1.11). In comparison to the structure of 3, the bridging water 

is lost and one of the oxygens (O3) of the non-bridging, κ2-carboxylate in 3 moves into a 

bridging position in the structure of 3*.  This change causes the nine-member rings 

formed by the carboxylate ligand and naphthalimide carbonyls in 3 to become a seven-

member ring, similar to that observed in complexes 1 and 2. Sodium polyhedra are 

corner-shared through the carboxylate O3 and extend into helical rods (Figure 1.12). The 

second naphthalimide carbonyl of each ligand is involved with bridging adjacent rods. 

The overall 3D structures is the same as the previous four compounds where each of the 

homochiral helical rods of corner-shared sodium atoms are connected to four adjacent 

rods generating a uninodal 4c net (Figure 1.13). The metrics for the π…π stacking are 

listed in Table 1.2. 

 

Figure 1.11. The Na+ coordination environment of Na(L ala) (3*); black C, red O, blue N, 
white H, yellow Na. 
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Figure 1.12. (a) The rod-like structure of 3* formed by corner shared Na+ polyhedra and 
(b) the P-handed helix highlighted in purple follows the Na1-O3-Na1-O3 chain. 

 

Figure 1.13. View down the crystallographic a axis of Na(L ala) (3*) illustrating the four 
points of connectivity between rods, where each rod is a different color and the vertices 
of the square lie in the center of each helical rod.  
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Table 1.2. π…π stacking metrics for compounds 1-3.  

Cen-Cen(Å) dipole ∠∠∠∠ (°) plane ∠∠∠∠ (°) avg dist (Å) χ (Å)

1 K(Lala)(MeOH) 3.70 180 4.8 3.45 1.34

2 K(Lala)(H2O) 3.67 180 2.9 3.48 1.16

2* K(Lala)(H2O)0.29 3.63 180 3.6 3.45 1.16

3 Na(Lala)(H2O) 3.77 180 5.9 3.49 1.43

3* Na(Lala) 3.66 180 3.8 3.46 1.18

Compound

 

 

 In the structure of K(L ser) (4), potassium is 6-coordinate with two of the sites 

occupied by µ2-κ2 carboxylate oxygens, two are filled by the bridging alcohol functional 

groups located in the side-chains, and the last two are occupied by carbonyls of 

naphthalimide rings (Figure 1.14). The designed ligand modification in L ser
- when 

compared to L ala
- introduces the alcohol in the side-chain that replaces the solvent 

molecules in the structures of 1-3. One of the naphthalimide carbonyls in each ligand is 

bonded to the same potassium cation as the carboxylate and alcohol that each bridge a 

different potassium cation in the same chain, forming a [3.2.2] bicyclic system. The 

distorted trigonal prismatic potassium polyhedra are edge-shared through the bridging 

alcohol and carboxylate oxygens and extend in one dimension to generate helical rods 

(Figure 1.15). The P-handed helical rods are defined by the K1-O4-K1-O4 chain and 

have a pitch of 6.61 Å. The other naphthalimide carbonyls in each ligand bridge to 

potassium cations in adjacent helices.  In contrast to 1-3, these connections extend in only 

two directions, connecting the rods into sheets. All of the naphthalimide rings are pointed 

away from the helices, fixed in position by the tridentate coordination mode of the ligand, 

and line up in parallel ribbons. The naphthalimide rings are interdigitated through π…π 

stacking connecting the sheets into a three-dimensional supramolecular metal-organic 

framework (SMOF) in a “zipper-like” fashion as shown in Figure 1.16.  By introducing a 
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donor group into the ligand sidechain, we successfully exclude coordinated solvents, but 

the ligand is now locked into a different orientation and a new structure type is formed. 

The metrics for the π…π stacking are listed in Table 1.3. 

 

Figure 1.14. The K+ coordination environment of KL ser (4) ; black C, red O, blue N, 
white H, orange K. 

 

Figure 1.15. (a) A sheet of rods from 4 formed by edge shared K+ polyhedra bridged 
together by the carbonyls of the naphthalimide and (b) the P-handed helix of each rod 
highlighted in purple follows the K1-O4-K1-O4 chain. 
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Figure 1.16. Views down the crystallographic a (left) and c (right) axis of 4 illustrating 
the zipperlike  π…π stacking extending the structure in three dimensions and slippage of 
the naphthalimide rings. Each sheet is distinguished with a different color. Hydrogen 
atoms are omitted for clarity. 

 Cs(L ser) (5) has a very similar structure to 4. Cesium has an unusually low 

coordination number of 6 with two of the sites occupied by µ2-κ2 carboxylate oxygens, 

two are filled by the bridging alcohol side-chains, and the last two are filled by carbonyls 

of the naphthalimide rings (Figure 1.17). The distorted trigonal prismatic cesium 

polyhedra are edge-shared through the bridging alcohol and carboxylate oxygens and 

extend in one dimension to generate helical rods as shown in Figure 1.18. The P-handed 

helical rods are defined by the Cs1-O4-Cs1-O4 chain and have a pitch of 6.61 Å.  The 

rods are bridged together by carbonyls of the naphthalimide groups extending in two 

directions to form sheets. These sheets are zippered together through π…π stacking in a 

similar fashion to 4 (Figure 1.19). The metrics for the π…π stacking are listed in Table 

1.3. 
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Figure 1.17. The Cs+ coordination environment of CsL ser (5) ; black C, red O, blue N, 
white H, yellow Cs. 

 

Figure 1.18. (a) A sheet of rods from 5 formed by edge shared Cs+ polyhedra bridged 
together by the carbonyls of the naphthalimide and (b) the P-handed helix of each rod 
highlighted in purple follows the Cs1-O4-Cs1-O4 chain. 

 

Figure 1.19. Views down the crystallographic a (left) and c (right) axis of CsL ser (5) 
illustrating the zipperlike π…π stacking extending the structure in three dimensions and 
slippage of the naphthalimide rings. Each sheet is distinguished with a different color. 
Hydrogen atoms are omitted for clarity. 
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 The coordination environment for the alkali cation in Cs(L ala) (6) is significantly 

different from 1-5, yet the overall 3D structure is very similar to 4 and 5. Compound 6 is 

the only complex with L ala
- to exclude the solvent molecule in the structure. Cesium is 6-

coordinate with four of the sites occupied by µ
2-κ2:κ2 carboxylate oxygens and the 

remaining two filled by carbonyls of the naphthalimide rings (Figure 1.20). The unique 

µ
2-κ2:κ2-bonding of the carboxylate group allow the cesium cations to be six-coordinate 

without the presence of the solvent molecule in 1-3. The cesium cation is in an extremely 

distorted, low-coordination environment with all of the oxygen donor atoms on one side 

leaving an open face on the metal. The distance between cesium and the hydrogen atoms 

of the methyl group of the ligand is short enough (3.17 Å) to denote a Cs…H interaction 

(Figure 1.20b). There is also an interaction between cesium and an aromatic hydrogen 

atom from an adjacent sheet with a distance of 3.32 Å. The irregular cesium polyhedra 

are edge-shared through both carboxylate oxygens, O3 and O4, and extend in one 

dimension to generate the helical rod SBU. The P-handed helical rods are defined by the 

Cs1-O4-Cs1-O4 chain and have a pitch of 6.56 Å. One of the carbonyls of the 

naphthalimide is bonded to the same cesium cation as the carboxylate making the ligand 

tridentate to one metal as in 4 and 5 and generating a [4.1.1] bicyclic system. As in these 

two structures, the other naphthalimide carbonyls bridge to potassium cations in adjacent 

helices, again extending in only two directions forming sheets of helical rods (Figure 

1.21). There is π…π stacking between the naphthalimide rings linking sheets together into 

a SMOF in the same motif as 4 and 5 (Figure 1.22). The metrics for the π…π stacking are 

listed in Table 1.3. 
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Figure 1.20. (a) The Cs+ coordination environment of CsL ala (6) and (b) possible Cs…H 
interactions; black C, red O, blue N, white H, yellow Cs. 

 

Figure 1.21. (a) A sheet of rods from 6 formed by rods of edge shared Cs+ polyhedra 
bridged together by the carbonyls of the naphthalimide and (b) the P-handed helix of 
each rod highlighted in purple follows the Cs1-O4-Cs1-O4 chain. 

 

Figure 1.22. Views down the crystallographic a (left) and c (right) axis of CsL ala (6) 
illustrating the zipperlike π…π stacking extending the structure in three dimensions and 
slippage of the naphthalimide rings. Each sheet is distinguished with a different color. 
Hydrogen atoms are omitted for clarity. 
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Table 1.3. π…π stacking metrics for compounds 4-6.  

Cen-Cen(Å) dipole ∠∠∠∠ (°) plane ∠∠∠∠ (°) avg dist (Å) χ (Å)
4 K(L ser) 4.18 180 1.6 3.30 2.56
5 Cs(L ser) 4.32 180 1.5 3.31 2.78
6 Cs(Lala) 4.53 180 10.3 3.27 3.11

Compound

 

Thermal Analysis. Thermal gravimetric analysis was performed on a TA Instruments 

SDT 2960 under a steady stream of dry air. Thermal analysis of compounds 1 and 4 are 

representative of their structure types and are shown in Figure 1.23.  Compound 1 

showed a weight loss at 128 °C that corresponds with a loss of the coordinated methanol 

ligand (9.81%, calcd. 9.44%).  In addition, a physical change from dark brown single 

crystals to a white polycrystalline powder (1p) was observed at this temperature. The 

PXRD of this powder reveals that although the solid is polycrystalline, the structure has 

changed. Single crystals of the 1 can be reformed by recrystallization of this solid from 

methanol, as indicated in the Synthesis section. The polycrystalline powder remains 

stable until decomposition sets in starting at 319 °C. 

 TGA of compound 2 showed a weight loss between 80 and 120 °C corresponding 

to the loss of the coordinated water ligand (6.00%, calcd. 5.54%), resulting in the 

formation of a new compound, 2*. Single crystal X-ray analysis of 2*, formed by heating 

crystals of  2 at 140 °C for 3 hours, showed a partially hydrated compound with a 29% 

occupancy of coordinated water where the remaining potassium cations are five 

coordinate. Because the TGA shows a quantitative loss of water, we assume that partial 

rehydration occurred in the short time transferring the single crystals from the nitrogen 

atmosphere into the paraffin liquid for the X-ray analysis. PXRD analysis shows 2* is 

different from 1p. Upon further heating, compound 2* experiences a higher 

decomposition point (347 °C) than 1p even though they share the same chemical 
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formula. After exposure of the single crystal used for the structure of 2* to air for two 

days compound 2 is reformed by reuptake of water, as confirmed by single-crystal XRD. 

Upon heating, compound 3 experienced a weight loss between 89 and 177 °C 

indicative of a loss of the coordinated water ligand from the structure (6.40%, calcd. 

5.83%). A second TGA experiment was performed where the heat ramp was stopped at 

160 °C and after sitting in air at room temperature for three days the compound regained 

the lost water to reform the original compound, as shown by both PXRD and single 

crystal X-ray analysis.  In a third experiment, crystals were heated in a Schlenk tube 

under vacuum to 150 °C for an hour, cooled under dry nitrogen and mounted quickly in 

the nitrogen stream of the single crystal diffractometer.  Single crystal X-ray structural 

analysis shows that the crystals of 3 have undergone a single-crystal to single-crystal 

transformation and form compound 3* at high temperature. Exposure of these dehydrated 

crystals to moist air for two day results in the reformation of 3. This single-crystal to 

single-crystal transformation experiment was repeated a second time on the same two 

crystals, and again single crystal X-ray analysis at each stage showed the crystals still 

diffracted, but showed some signs of decay. It is important to note that in these 

experiments the single crystal are cooled from ambient temperature to 100 K at each step 

to collect the X-ray data, again indicating the stability of these crystals.  In a separate 

experiment, single crystals were heated in a Schlenk tube under nitrogen to 200 °C for an 

hour, cooled under nitrogen and mounted quickly in the nitrogen stream of the single 

crystal diffractometer and again X-ray structural analysis shows that the crystals of 3 had 

undergone a single-crystal to single-crystal transformation to form compound 3*.  TGA 
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experiments show that compound 3* is stable until 335 °C, well above the decomposition 

point. 

 As shown in Fig. 1.23b for 4, decomposition temperatures for compounds 4-6 are 

280, 227, and 314 °C, respectively. Compounds 4 and 6 maintain single crystallinity 

upon heating up until 250 and 215 °C, respectively; single crystals heated to these 

temperatures still diffract. Compound 5 does not retain single crystallinity when heated. 

 

Figure 1.23. Thermal gravimetric analysis for compounds 1 and 4. 

Spectral Analyses. Compounds 1-6 all display similar fluorescence spectra. Complexes 

with the L ala
- ligand all exhibit red-shifted emission spectra when compared to the 

protonated form, HL ala, and complexes with the L ser
- ligand all exhibit blue-shifted 

emission spectra when compared to the protonated form, HL ser. No trends were found 

between structure type, cation choice, and fluorescence maxima. Fluorescence excitation 

and emission maxima are given in Table 1.4. 
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Table 1.4. Fluorescence excitation and emission maxima for the protonated ligands and 

their compounds.  

Excitation Max (nm) Emission Max (nm)

381 450

1 K(L ala)(MeOH) 379 469

2 K(Lala)(H2O) 380 462

3 Na(L ala)(H2O) 373 453

6 Cs(L ala) 395 465

380 470

4 K(L ser) 395 438

5 Cs(L ser) 412 427

Compound

HLala

HL ser 

 

Second Harmonic Generation. Compounds 1-3 and 4-6 all contain the naphthalimide 

chomophore and crystallize in the noncentrosymmetric space groups P212121 and P21, 

respectively; space groups that can potentially generate interesting nonlinear optical 

behavior. We did not detect any SHG with an incident wavelength of 1064 nm from 1-3. 

It is possible that these materials do show nonlinear optical SHG activity but at different 

incident wavelengths. For 4, 5 and 6, powder SHG measurements indicate a SHG 

efficiency of approximately 30 × α−SiO2 in the 45−63 µm particle size range. Additional 

SHG measurements, particle size vs. SHG efficiency, indicate that 4 and 5 exhibit type 1 

phase-matching while 6 reveals type 1 non-phase-matching behavior. As such 4-5 and 6 

fall into the class B and C categories, respectively, of SHG materials, as defined by Kurtz 

and Perry (Figure 1.24).14 Based on these measurements, we estimate the average NLO 

susceptibilities, 〈deff〉exp, of 4, 5 and 6 approximately 6.3, 6.3 and 3.0 pm/V, respectively.  
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Figure 1.24. SHG efficiency for compounds 4-6 exhibiting type I phase- and non-phase-
matching responses. 

Discussion 

Eight new complexes of three different alkali metals (Na+, K+ and Cs+) have been 

prepared from the two ligands pictured in Scheme 1; ligands that contain a carboxylate 

donor group, a enantiopure chiral center and a 1,8-naphthalimide π...π stacking 

supramolecular tecton. Even though there is a large change in ionic radii with these three 

metals (six-coordinate ionic radii of 1.02, 1.46 and 1.67 Å for Na+, K+, and Cs+, 

respectively17), each of the new complexes has a solid state structure based on six-

coordinate metals linked into homochiral helical rod SBU central cores, with the 

exception of compounds 2* and 3* which have lost solvent upon heating and contain 5-

coordinate potassium or sodium cations, respectively. Despite this uniformity of 

structure, the helical rod SBU cores form from four different, but related bonding 

arrangements: in 1, 4 and 5 the metal polyhedra are linked by edge-sharing through 

bridging oxygens originating from the alcohol and carboxylate; in 2, 2*, and 3* by 

corner-sharing through bridging oxygens originating from the carboxylate; in 3 by 

corner-sharing through bridging oxygens originating from the water; and in 6 by edge-

sharing through bridging oxygens originating only from the carboxylate. Very few 

homochiral helical rod SBUs have been reported previously.19 Also, this consistent 
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formation of a central organizational structural feature in the work described here is 

uncommon for group 1 carboxylates.12  

In addition to this consistent formation of a similar type of SBU, only two overall 

structural arrangements of the eight complexes are observed.  The five complexes 1-3* 

are all three-dimensional rod-packed structures in a uninodal 4c net, in which the 

remaining two dimensions are linked by the interactions of oxygens on the naphthalimide 

groups bridging to adjacent SBUs forming a “square” arrangement. In contrast, 

complexes 4-6 show polar covalent linkages in only one additional dimension leading to 

the formation of two-dimensional sheets. This inter-rod bonding to the group 1 metal of 

the carbonyl oxygens coupled with intra-rod bonding of the same type present in all eight 

complexes is a new bonding feature of ligands containing the naphthalimide group that 

was not present in our previous work with transition metal complexes. Such a difference 

is not unexpected in complexes of these oxophilic metals.  

In all of our previous chemistry with these types of naphthalimide-based ligands, 

we have observed structures strongly influenced by strong π…π stacking interactions.  In 

addition to complexes 1-3* having three-dimensional “covalent” structures, they are also 

supported by these supramolecular interactions. More importantly, in the structures of 

complexes 4-6, the third dimension is supported exclusively by interdigitated π…π 

stacking interactions, forming SMOF solids. The overlap of the naphthalimide rings in 

complexes 4-6 is somewhat reduced when compared to complexes 1-3*, a result 

emphasized by the “slippage” parameters in Tables 1.2 and 1.3, but the overlap is still 

substantial.  It is interesting to speculate that these noncovalent forces are instrumental 

not only in the organization of the third dimension in complexes 4-6, but also in the 
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consistency of the structures based on homochiral helical SBUs in all eight complexes 

reported here. This impact of the naphthalimide supramolecular tecton is supported by 

the fact that all of the metals have low coordination numbers, most notably the five-

coordinate potassium cation in 2*, the five-coordinate sodium cation in 3* and the six-

coordinate cesium cations in compounds 5 and 6, all particularly low for these large 

cations.20 

A related interesting result of this chemistry is the limited amount of coordinated 

solvent in all the structures. In general, group 1 complexes crystallized from polar 

solvents, especially those of the heavier metals, retain a significant amount of solvent,12 

and this issue has been shown to impact on the dimensionality and thermal stability of the 

structures.12  Complexes 1-3 contain only one equivalent of solvent in the structures. 

Heating complexes 2 and 3 formed new complexes, 2* and 3* respectively, which have 

no solvent. Complexes 4 and 5 contain no solvent by design; after obtaining the result of 

one methanol in the structure of 1 we synthesized the L ser
- ligand that “builds in” the 

alcohol functional group to intentionally prepare complexes that contained no solvent.  

While this designed ligand modification is successful in the initial goal of eliminating the 

solvent, the resulting tridentate bonding of the new ligand also caused a structural change 

from three- to two-dimensional as described above. The absence of solvent in complex 6 

is especially notable as the large cesium cation is only six-coordinate and has a “vacant 

face” in its structure.  We note that although the coordination sphere of 6 has this highly 

distorted arrangement of the ligands, there are apparently at least two Cs-H interactions 

(Fig. 1.20 b).  Again, as indicated above, it is likely that the large naphthalimide groups 
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coupled with the π…π stacking interactions strongly influence the amount of solvent and 

relatively low coordination numbers in these structures. 

The presence of solvent makes a substantial impact on the thermal properties. 

Compound 1 loses the bridging methanol upon heating resulting in a polycrystalline 

powder (1p) which is stable up to the decomposition point around 318 °C.  Although this 

loss of solvent results in collapse of the single crystal structure, this desolvated solid can 

be recrystallized to reform the starting structure. In the cases of compounds 2 and 3, 

coordinated water can be reversibly removed/incorporated into the structure by heating in 

the absence of water vapor and cooling in the presence of water vapor through gas/solid, 

single-crystal to single-crystal transformations. In the case of compound 2 there is no 

huge impact on the crystal structure from the transformation, likely a function of the fact 

that the water molecule is a terminal ligand. The loss of water results in a 5-coordinate 

potassium cation, which is unusually low, and a slight decrease of the unit cell volume. 

Upon heating compound 3, the water that is the only bridge between the sodium cations 

was lost, but the crystals remain suitable for single crystal X-ray analysis. In the structure 

of this new compound,  3*, the role of the carboxylate group changed from κ
2 to µ2-κ1:κ2  

and O3 rotates 1.36 Å closer to the adjacent sodium cation to form a direct interaction in 

order to satisfy the coordination environment of the sodium cations and retain the 

homochiral helical rod SBU structure (Figure 1.25). Exposure of the single crystals of 3* 

to moist air over the course of three days results in a reincorporation of water into the 

bridging position of the rods reforming 3, again without loss of single crystallinity. This 

reversible single-crystal to single-crystal transformation can be repeated second time, but 

with modest degradation of the crystal (note the crystals are cooled to 100 K at each step 
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for the X-ray analysis). It can be argued that this structural change is supported by the 

intra-rod chelate rings formed by the carboxylate and naphthalimide carbonyl, which 

change from a nine-member ring in 3 to a seven member ring in 3*. Remarkably, these 

reversible single-crystal to single-crystal transformations occur in the absence of 

channels. In contrast to the solvated crystals, crystals of solvent free compounds 4 and 6 

are amazingly stable; they retain single crystallinity up to ca. 210 °C, well above the 

decomposition point of the protonated ligand.  This stability is particularly notable for an 

SMOF solid, where at least one dimension is organized only by noncovalent forces. 

 

Figure 1.25. A comparison of hydrated 3 (a) and dehydrated 3* (b) and the differences in 
carboxylate bonding; black C, red O, blue N, white H, yellow Na. 

All of the compounds exhibit luminescence which is known to be derived from 

the naphthalimide ligand. Compounds containing the L ala
- ligand (1-3, 6) are all red-

shifted by 3-19 nm with respect to crystals of the protonated ligand whereas compounds 

containing the L ser
- ligand (4, 5) are both blue-shifted by 32-43 nm with respect to the 

crystals of the protonated ligand. 

The second-harmonic generation efficiency of these compounds was studied for 

several reasons: the naphthalimide ring is a known chromophore, the ligands are 

enantiopure and lead to the formation of crystals with noncentrosymmetric space groups 
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and rod shaped SBUs are known to promote interesting electronic properties because of 

the extended metal-metal interactions.21 Compounds 1-3 did not exhibit observable SHG 

efficiency at an incident wavelength of 1064 nm, but compounds 4-6 did exhibit modest 

SHG efficiency for MOF-like compounds in the range of 30 x α-SiO2. Compounds 4 and 

5 exhibit type I phase-matching behavior while compound 6 is type I non-phase 

matchable. The SHG effect in 4-6 is thought to originate from the lower symmetry of 

these networks because 1-6 contain the same building blocks: enantiopure helical rods of 

alkali metals and π…π stacking. The strong SHG response coupled with the retention of 

crystallinity at elevated temperatures makes compounds 4-6 potential candidates for 

practical applications.  
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Chapter II 

Framework complexes of group 2 metals organized by homochiral rods and π···π stacking 

forces: a breathing supramolecular MOF 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

__________________________ 

2Adapted with permission from Reger, D. L.; Leitner, A.; Pellechia, P. J.; Smith, M. D 

Inorg. Chem. 2014, 53(18), 9932-9945. DOI: 10.1021/ic501581c. Copyright 2014 

American Chemical Society. 
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Introduction 

The crystal engineering of metal-organic hybrid materials with novel extended 

structures remains an important goal in synthesis and crystal growth.1 Metal-organic 

frameworks (MOFs) are composed of groups of metal ions, also known as secondary 

building units (SBUs), covalently connected in one-, two- or three-dimensions by organic 

linkers.2 Supramolecular tectons (e.g. groups that can hydrogen bond or participate in π...π 

stacking interactions) can be built into the bridging ligands for enhanced flexibility and 

stability.3 Flexible MOFs can show reversible structural changes based on external 

stimuli and have shown selective adsorption of substrates that can be used for sensing and 

separations.4 The ability to characterize these highly flexible crystalline materials by 

solid-state NMR spectroscopy has been well established.4a,5 

We have designed a series of ligands (Scheme 2.1) containing a carboxylate 

donor group and a naphthalimide π...π stacking supramolecular tecton.  Of interest here 

are the ligands derived from enantiopure naturally occurring amino acids that all contain 

a single carboxylate group that coordinates to the metals to create the SBUs and a chiral 

center that imparts its chirality on the SBU leading to solids in noncentrosymmetric space 

groups.3,6,7 Using amino acid precursors provides access to additional functionality made 

available by the side-chain, varying in the work reported here from a methyl group in the 

case of L-alanine (in one case R-alanine) to a hydroxyl group in the case of L-serine. 

Most complexes of amino acid ligands involve coordination of the amine to the metal.8 

We avoid this coordination by protecting the amine with a 1,8-naphthalimide group that 
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not only blocks it from coordination, but also has a propensity to engage in strong π...π 

stacking interactions, which have a substantial impact on the 3D structures.6,9,10 The 1,8-

naphthalimide group is also an excellent chromophore that has many biological imaging 

applications including probing, cellular imaging and DNA-tagging for anti-cancer 

research because of the ability to form strong intermolecular complexes with nucleic 

acids.11 

 

Scheme 2.1 Multifunctional Ligands 

When these ligands are combined with transition metals, the three dimensional structures 

of the new complexes are generally dominated by π...π stacking and contain either open 

channels or cavities filled with disordered solvent.6 These solids have interesting and 

potentially useful properties. For example, in a previous paper we showed a densely 

packed compound held together by π...π stacking, [Zn2(LC4)4(DMSO)2]·2(CH2Cl2), could 

exchange interstitial dichloromethane for water despite the lack of pores via a single-

crystal to single-crystal transformation.9a In a separate paper, we showed enantioselective 

binding of racemic ethyl lactate to the copper paddlewheel SBU in the compound 

[Cu4(L asn)8(pyridine)(MeOH)], also via a single-crystal to single-crystal transformation.6c 

When L ala
- and L ser

-
 are combined with group 1 metals, the structures are dominated by 

the consistent formation of helical rod SBUs that are in all cases homochiral.7 These 

MOFs have been shown to be thermally stable, retaining single-crystallinity even after 
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being heated to 200 °C in air. In addition, the compounds Na(L ala)(H2O) and 

K(L ala)(H2O) show interesting flexibility;  bridging water molecules of the rod-shaped 

SBU can be reversibly removed, despite coordination to two metals, in single-crystal to 

single-crystal transformations. The combination of the homochiral rod-shaped SBUs and 

naphthalimide groups opened up the possibilities for unique electronic properties, which 

we demonstrated with modest solid-state luminescence and second order harmonic 

generation.  

There has only been limited research on the synthesis of MOFs from s-block 

metals with little previous ability to predict and control the coordination geometry, let 

alone control the formation of the SBU in MOF type structures.12 Given our success with 

group 1 complexes of L ala
- and L ser

-
  (Scheme 2.1), where we showed the consistent 

formation of rare examples of homochiral rod SBUs,2  we decided to investigate the 

dicationic metals in group 2. We report here the syntheses of complexes of calcium and 

strontium with these same two enantiopure ligands, and in one case with the enantiomeric 

ligand L ala*
-.  As observed in the group 1 complexes, the structures of these compounds 

are dominated by homochiral rod SBUs.  In contrast to the group 1 chemistry where both 

3D and 2D MOF structures formed, with these group 2 metals only 1D structures form, 

but the π...π stacking interactions lead to supramolecular MOFs (SMOFs) where the 

remaining dimensions are organized by noncovalent forces. In one case, the strontium 

polyhedra adopt a rare face sharing configuration that composes the rod-shaped SBU.13 

Another of the compounds undergoes a dynamic single-crystal to single-crystal 

transformation; a breathing SMOF where the 1D channels can be open or closed. The 

nature of this breathing was investigated by single-crystal X-ray crystallography, IR and 
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solid-state 1H, 13C and 2H NMR spectroscopy. In addition we report the thermal and 

luminescent properties of these complexes.  

Experimental 

General Considerations. All reactants were used as purchased from Aldrich and Strem. 

The syntheses of the ligand precursors HL ala and HL ser have been reported elsewhere.7 

HL ala* is synthesized the same as HL ala but starting with D-alanine instead of the 

naturally occuring L-alanine to produce the protonated ligand with the opposite handed 

chirality. Elemental analyses were performed by Robertson Microlit Laboratories 

(Ledgewood, NJ). 1H, 13C and 2H solid-state NMR spectra were recorded on a Bruker 

Advance III-HD 500 MHz spectrometer. Infrared spectra were recorded on a Thermo 

Nicolet Avatar 360 FT-IR spectrophotometer. Crystals were collected and transferred to a 

drybox, ground into a Nujol Mull and placed between NaCl plates. Thermalgravimetric 

analyses were performed using a Thermal Analysis (TA) SDT Q600 simultaneous 

DTA/TGA system. The samples were heated in dry air to 800 °C with a heating rate of 

10 °C/min. For compound 1, the experiment was terminated after the decomposition 

temperature was recorded because it frothed when heated to decomposition. The 

fluorescence measurements were done on a Perkin Elmer Lambda 35 UV-vis 

spectrometer. 

[Ca(L ala)2(H2O)]·(H2O) (1). HL ala (2.0 g, 7.4 mmol) was added to a solution of 

potassium hydroxide (0.42 g, 7.4 mmol) in water (25 mL) and stirred for an hour until the 

solution was homogeneous. The solvent was evaporated and the remaining solid dried in 

vacuo to produce the potassium salt of the ligand (KL ala) as a light brown powder (1.96 

g). A 9 mL thick walled glass tube with a Teflon screw top was charged with a sample of 
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this solid (0.055 g), calcium nitrate tetrahydrate (0.017 g,  0.075 mmol), and 1 mL of a 

1:1 water/isopropanol solution and heated at 120 °C. Over the course of heating for 3 

days, yellow crystals grew on the walls of the tube above the solvent line. After no 

starting material remained at the bottom of the tube, the heat was removed and the system 

was allowed to slowly cool at a rate of about 1°C/min. Small yellow crystals were 

collected from the walls of the tube and washed with diethyl ether to provide 0.031 g of 

single crystals. Anal. Calcd. (Found) for C30H23CaN2O10: C 58.98(58.92); H 3.79 (4.02); 

N 4.58 (4.34).  

[Ca(L ser)2]·(H2O)2 (2). This complex was prepared as for 1 using KL ser (0.050 g), 

calcium nitrate tetrahydrate (0.010 g, 0.061 mmol) and 1mL of a 1:1 water/isopropanol 

solution to produce colorless crystals that were washed with methanol to provide 0.026 g 

of single crystals. Crystals were dried to constant weight before elemental analysis. Anal. 

Calcd. (Found) for C30H24CaN2O12: C 55.90 (56.29); H 3.75 (4.05); N 4.34 (4.83). 

[Sr(L ala)2(H2O)]·(H2O)3 (3). A 9 mL thick walled glass tube with a Teflon screw top was 

charged with KL ala (0.050 g), anhydrous strontium nitrate (0.015 g,  0.070 mmol), and 1 

mL of a 4:1 water/methanol solution and heated at 120 °C. Yellow crystals grew 

overnight on the walls of the tube above the solvent line. Small yellow crystals were 

collected and washed with methanol to provide 0.028 g of single crystals. Anal. Calcd. 

(Found) for C30H28N2O12Sr: C 51.72 (52.09); H 4.06 (3.84); N 4.02 (3.89). 

[Sr(L ala*)2(H2O)]·(H2O)3 (3*). This compound was prepared by the same procedure as 

for 3 but starting with KL ala* . 

[Sr(L ser)2(H2O)] (5). This compound was prepared by the same procedure as for 2, but 

with Sr(NO3)2 (0.032 g) to produce large colorless needles. Colorless crystals were 
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collected from the walls of the tube and washed with methanol to provide 0.060 g of 

single crystals. Crystals were dried to constant weight before elemental analysis. Anal. 

Calcd. (Found) for C30H22N2O11Sr: C 53.42 (53.45); H 3.02 (3.29); N 4.16 (4.16).  

Single-Crystal to Single-Crystal Experiments – Synthesis of [Sr(Lala)2(H2O)] (4). 

Compound 3 undergoes a reversible single-crystal to single-crystal transformation when 

placed under vacuum to form [Sr(L ala)2(H2O)], 4. Single crystals of compound 3 were 

collected from the walls of the solvothermal tubes and washed with methanol. After 

checking the unit cell with single crystal X-ray diffraction to verify crystallinity, the 

crystals were held under vacuum for one hour and single crystal X-ray diffraction showed 

that compound 4 had formed, although the crystallinity was degraded. Anal. Calcd. 

(Found) for C30H22N2O9Sr: C 56.11 (56.50); H 3.45 (3.28); N 4.36 (4.41). This same 

batch of single crystals were then returned to a glass vial that was kept in a humid 

environment for 24 hours and single crystal X-ray diffraction showed that 3 had reformed 

and the crystal quality had improved. The experiment was repeated on the same crystals 

three times with the same results.  

 

Crystallographic Studies. For all complexes, X-ray diffraction intensity data were 

measured at 100(2) K using a Bruker SMART APEX diffractometer (Mo Kα radiation, λ 

= 0.71073 Å). The raw area detector data frames were reduced with the SAINT+ 

program. Direct methods structure solution, difference Fourier calculations and full-

matrix least-squares refinement against F2 were performed with SHELXS/L, 

implemented in OLEX2. Non-hydrogen atoms were refined with anisotropic 

displacement parameters. Hydrogen atoms bonded to carbon were placed in 
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geometrically idealized positions and included as riding atoms. For compounds 1-5 

crystal enantiopurity and the “S” configuration (except 3* where it is “R”)  of the chiral 

carbon (C13 in all structures) were established by the absolute structure (Flack) 

parameters of zero (within experimental error) derived from the X-ray data sets. For 

compound 1 the data crystal was mounted inside a thin-walled glass capillary along with 

a drop of the mother liquor. Previous studies indicated some decomposition of the 

crystals in air. Attempts to cool crystals in a nitrogen cold stream resulted in loss of 

crystallinity accompanied by clouding of the crystals and broadening of the diffraction 

maxima. Details of data collection are given in Table 2.1. 

Table 2.1 Crystallographic Data  

1 2 3 3* 4 5

Formula C30H23.82CaN2O9.91 C30H24CaN2O12 C30H28.04N2O12.02Sr C30H28.10N2O12.05Sr C30H22N2O9Sr C30H22N2O11Sr

Fw, g mol-1 610.97 644.59 696.57 697.03 642.11 674.11
Cryst. Syst. Tetragonal Monoclinic Tetragonal Tetragonal Tetragonal Orthorhombic

Space group P43212 C2 P41212 P43212 P41212 P212121

T, K 296(2) K 100(2) K 100(2) K 100(2) k 100(2) K 100(2) K
a , Å 20.8348(16) 15.585(4) 19.868(3) 19.9415(9) 19.030(5) 7.0910(9)
b , Å 20.8348(16) 21.919(5) 19.868(3) 19.9415(9) 19.030(5) 14.1845(18)
c , Å 14.064(2) 8.214(2) 14.975(4) 14.9995(13) 14.797(7) 26.618(3)
β , deg 90 103.410(4) 90 90 90 90

V, Å3 6104.9(12) 2729.6(11) 5911.0(18) 5964.8(7) 5359(4) 2677.3(6)
Z 8 4 8 8 8 4

R1(I >2σ (I ))a 0.0564 0.0438 0.0538 0.0325 0.1329 0.0304

wR2(I >2σ (I ))b 0.1428 0.0971 0.1118 0.0841 0.3251 0.0646

Flack Parameter 0.01(5) -0.01(3) -0.015(11) -0.018(2) 0.072(13) -0.007(4)  

aR1 = Σ ||Fo| - |Fc|| / Σ |Fo|, 
bwR2 = { Σ [ w(Fo

2-Fc
2)2 ] / Σ [ w(Fo

2)2 ] } 1/2  

 

Results 

Synthesis. Single crystals of [Ca(L ala)2(H2O)]·(H2O) (1), [Ca(L ser)2]·(H2O)2 (2), 

[Sr(L ala)2(H2O)]·(H2O)3 (3), [Sr(L ala*)2(H2O)]·(H2O)3 (3*) and [Sr(L ser)2(H2O)] (5) were 

synthesized via solvothermal methods by combining the potassium salt of each respective 

ligand and the appropriate alkaline metal nitrate (2:1 molar ratio) in a mixed solvent 
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system containing a mixture of either methanol and water or isopropyl alcohol and water. 

The sealed tubes were heated at 120 °C in an oil bath with the crystals growing slowly 

just above the solvent line of the hot tube.  

Compound 3 undergoes a single-crystal to single-crystal transformation when placed 

under vacuum to form compound 4, [Sr(Lala)2(H2O)], where the interstitial waters in 3 are 

removed, but the coordinated water molecule remains. Placing crystals of 4 in a humid 

atmosphere leads to the reformation of crystalline 3, a process that can be repeated at 

least three times.  Monitoring the crystals at each step by single crystal X-ray 

demonstrates that single crystallinity is retained in this process. 

Structure Descriptions. Compound 1, [Ca(Lala)2(H2O)]·(H2O), is composed of 

calcium cations bridged by L ala
- ligands into a chiral helical rod SBU that is interdigitated 

with adjacent parallel rods by the supramolecular π…π stacking of the naphthalimide rings 

to generate a 3D SMOF structure. The coordination number of the calcium cation is 

seven and the irregular polyhedron most closely resembles a capped octahedron. There 

are two nonequivalent ligands and each have different coordination modes (Figure 2.1). 

One carboxylate adopts a µ-κ1:κ2 bonding mode (this ligand is disordered over two sites 

and only one version is shown) while the other adopts a µ-κ1:κ1 bonding mode, thus 

filling five of the seven coordination sites.  Another key difference between the two 

ligands is the orientation of the methyl group at the chiral center, which are oriented in 

opposite directions with respect to the crystallographic c-axis. The last two metal sites are 

occupied by a bridging water molecule generating the edge shared polyhedra that make 

up the helical rod SBU. The homochiral, M helices created by the bridged calcium 

cations have a pitch of 14.06 Å (Figure 2.2). There are two types of π…π stacking in 
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which the naphthalimide rings are involved: intra-rod π…π stacking where ligands with 

opposing methyl orientation from the same rod stack together, and inter-rod π…π stacking 

where ligands from adjacent rods interact with one another to generate the 3D SMOF 

structure. All of the ligands are involved in both types of π…π stacking creating pairs of 

1,8-naphthalimide rings that interdigitated with pairs from an adjacent rod. The metrics 

used to evaluate the π…π stacking are listed in Table 2.2.  The π-stacked pairs of 

naphthalimide rings of 1 are oriented in a “square” arrangement, Figure 2 (right), so that 

each rod interacts with four adjacent rods generating a 3D network with square shaped 

channels (Figure 2.3). These channels are occupied by disordered water molecules. 

 

Figure 2.1 The Ca2+ coordination environment of [Ca(L ala)2(H2O)]·(H2O) (1) 
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Figure 2.2 Side view of the helical rod formed for 1 by edge shared calcium polyhedra 
(left) and a top-down view of the helices showing the naphthalimide overlap of intra-rod 
π…π stacking (right). 

 

Figure 2.3 A top down view of the 3D supramolecular structure of compound 1 where 
calcium cations are highlighted in yellow, adjacent helices are either red or blue and the 
disordered interstitial water molecules are colored teal. 
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 Compound 2, [Ca(L ser)2]·(H2O)2, contains calcium cations bridged by L ser
- 

ligands into a homochiral rod SBU that interacts with adjacent parallel rods through 

supramolecular interactions of the naphthalimide rings. The eight coordinate calcium 

cations are bridged through µ-κ1:κ2 carboxylates which occupy six of the coordination 

sites (Figure 2.4). The remaining sites are occupied by the alcohol group, an additional 

donor group designed into the ligand, which chelates the calcium atoms generating 6-

member rings. The homochiral zig-zag rods created by bridged calcium cations have a 

pitch of 8.21 Å (Figure 2.5). There are interstitial water molecules present that are 

hydrogen bonded to the alcohol, the naphthalimide carbonyl and one of the bridging 

carboxylates, all within the same SBU. The naphthalimide rings in compound 2 are 

oriented in a rectangular shape, Figure 2.5 (right), with two pairs of naphthalimide rings 

interdigitating with two pairs on adjacent rods generating a two dimensional structure of 

layered sheets (Figure 2.6). There are no strong supramolecular interactions between the 

sheets. The π…π stacking metrics for compound 2 are listed in Table 2.2. 

 

Figure 2.4 The Ca2+ coordination environment of [Ca(L ser)2]·(H2O)2 (2) 



www.manaraa.com

 

49 
 

 

Figure 2.5 Side view of the zig-zag rod in 2 formed by edge shared calcium polyhedra 
(left) and a top-down view of the rod (right). 

 

Figure 2.6 A top down view of the supramolecular structure of compound 2 with calcium 
cations highlighted in yellow and rods involved in π stacking are the same color. The 
sheets of homochiral rods composed of interdigitated naphthalimide rings extend from 
left to right and adjacent sheets are different colors. The hydrogen bonded water 
molecules are colored teal. 
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Compound 3, [Sr(L ala)2(H2O)]·(H2O)3, contains strontium cations bridged by L ala
- 

ligands into a homochiral helical rod SBU that interacts with adjacent parallel rods 

through supramolecular interactions of the naphthalimide rings. Each of the strontium 

cations is 8-coordinate. Six of the eight coordination sites are occupied by bridging µ-

κ
1:κ2 carboxylates from four different ligands. While the two nonequivalent ligands share 

the same coordination mode, they are distinct in that one has a coordinated naphthalimide 

carbonyl oxygen that forms a 7-membered chelate ring while the other does not. The 

ligand without the second mode of coordination is disordered over two positions; only 

one is shown. The last coordinate site is occupied by a water molecule that is involved in 

hydrogen bonds to the carboxylate O8A and to the naphthalimide carbonyl O6A from a 

different ligand (Figure 2.7). The P helix created by edge-shared strontium polyhedra has 

a pitch of 14.98 Å (Figure 2.8, left). Each of the helical rods interacts with four adjacent 

rods through strong π…π stacking interactions generating rectangular-shaped channels 

with a pore size of 1.9 x 7.7 Ǻ that are occupied by disordered water molecules (Figure 

2.9). The π…π stacking metrics for compound 3 are listed in Table 2.2.  

The structure of compound 3*, formed with the ligand R-isomer, L ala*
-, is the 

same as 3, but in the enantiomeric space group.  As shown in Figure 2.8 (right), the 

helical rod has the opposite, M-helicity. 
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Figure 2.7 The Sr2+ coordination environment of [Sr(L ala)2(H2O)]·(H2O)3 (3) 

 

Figure 2.8 Chiral rods in 3 (left) and 3* (right) formed by edge shared strontium 
polyhedra generating P and M helices, respectively. 
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Figure 2.9 A top down view of the 3D supramolecular structure of compound 3 where 
strontium cations are highlighted in green, adjacent helices are either red or blue and the 
disordered interstitial water molecules are colored teal. 

 Compound 3 undergoes a single-crystal to single-crystal transformation when 3 is 

left under vacuum to form [Sr(Lala)2(H2O)] (4), where all of the interstitial water is 

removed. The overall structure about strontium and the SBU rods for compound 4 are 

similar to 3 (Figure 2.10), but the unit cell volume has been reduced by about 9%, mostly 

along the crystallographic a- and b-axis. Figure 2.11 shows that the once open channels 

of 3 are now gone generating a closed form. There are surprisingly large differences in 

the π…π stacking metrics as listed in Table 2.2.  
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Figure 2.10 The Sr2+ coordination environment of Sr(L ala)2(H2O) (4) 

 

Figure 2.11 View showing how the channels of compound 3 (left) close in 4 (right) along 
the crystallographic c axis. Strontium cations are highlighted in green, adjacent helices 
are pink or blue and the disordered interstitial water molecules are teal. 

Compound 5, [Sr(L ser)2(H2O)], contains strontium cations bridged by L ser
- ligands 

into a homochiral rod SBU that interacts with adjacent parallel rods through 
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supramolecular interactions of the naphthalimide rings. The strontium cations are 9-

coordinate and bridged by µ-κ2 carboxylates from four different ligands. This 

monodentate carboxylate coordination mode leaves room for the alcohol group of both 

ligands to coordinate forming 6-membered chelate rings. In addition, for one of the two 

ligands a naphthalimide carbonyl oxygen bonds forming a [3.2.2] bicycle with the 

strontium cation through the carboxylate, the alcohol and one of the carbonyls of the 

naphthalimide ring (Figure 2.12). Another difference from compound 3 is the water 

molecule bridges strontium cations. Because there are now three bridging oxygen atoms 

between each cation, this chiral rod SBU is composed of face-sharing strontium 

polyhedra (Figure 2.13). The M helix created by the bridged strontium cations has a pitch 

of 7.09 Å. Each of the rods interacts with four adjacent rods through π…π stacking of the 

naphthalimide rings, but no channels form in this compound due to the offset packing 

(Figure 2.14). The π…π stacking metrics for compound 5 are listed in Table 2.2. 

 

Figure 2.12 The Sr2+ coordination environment of [Sr(L ser)2(H2O)] (5)  



www.manaraa.com

 

55 
 

 

Figure 2.13 Side view for 5 of the chiral rod formed by face-shared strontium polyhedra 
(left) and a top-down view of the rod (right). 

 

Figure 2.14 A top down view along the crystallographic a-axis of the 3D supramolecular 
structure of compound 5 where strontium cations are highlighted in green and adjacent 
helices are red or blue. 
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Table 2.2 π…π Stacking Parameters   

Compound Type of Stacking Cen-Cen(Å)dipole ∠∠∠∠  (°)a plane ∠∠∠∠  (°) avg dist (Å) χ (Å)b

intra-rod 3.77 53 1.7 3.50 1.42
inter-rod 3.62 129 0.5 3.48 0.99
inter-rod 3.67 115 3.8 3.51 1.06
inter-rod 4.37 137 27 4.04 1.69
inter-rod 4.17 130 26 3.93 1.39

inter-rod 4.46 91 8.6 3.48 2.79
inter-rod 3.57 127 9.7 3.48 0.73
inter-rod 3.54 64 9.3 3.51 0.47
inter-rod 4.46 71 1.2 3.31 2.98
inter-rod 3.51 70 6.9 3.50 0.23
inter-rod 4.00 52 10.7 3.55 1.84

inter-rod 4.00 160 19.8 3.46 1.96
inter-rod 4.42 176 19.8 3.48 2.68

[Sr(Lser)2(H2O)]5

[Ca(Lala)2(H2O)]·(H2O)

[Ca(Lser)2]·(H2O)2

1

2

[Sr(Lala)2(H2O)]4

[Sr(Lala)2(H2O)](H2O)33

 

arelative rotation of the rings (180° is the head to tail arrangement) bslippage parameter, 
the third side of the right triangle formed with the average perpendicular distance 
between the two rings and the line between the two central carbon atoms of the rings. 

Infrared Spectroscopy. Infrared spectroscopy, coupled with the preparation of 

isotopomers, were employed to better understand the role of both the interstitial and 

coordinated waters during the “breathing mechanism” of the inter-conversion of 

[Sr(L ala)2(H2O)]·(H2O)3 (3) and [Sr(L ala)2(H2O)] (4). In order to eliminate the impact of 

atmospheric moisture, samples were ground in a drybox with nujol oil and the sample 

chamber of the FT-IR instrument had a continuous flow of nitrogen. The spectra for 

compound 3 and [Sr(L ala)2(D2O)]·(D2O)3, 3d8 (prepared using D2O as the solvent in the 

reaction), are shown at the top of Figure 2.15.  For 3 (a), an O-H stretching vibration is 

located at 3520 cm-1 and for 3d8 (d) an O-D stretching vibration is located at 2600 cm-1. 

The broad peak and 2 small humps just below 3000 cm-1 and the two sharp peaks below 

2400 cm-1 are due to the nujol oil. Spectra run on crystals of both compounds exposed to 

vacuum, now the dehydrated forms 4 (b) and 4d2 (e), show similar H2O and D2O peaks, 

respectively. When 4 is rehydrated with D2O vapor for 24 hours, compound 3d8 forms; 

the IR spectrum (c) shows only a D2O peak and little or none of the H2O peak. When 4d2 
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is introduced to H2O vapor, compound 3 forms; the IR spectrum (f) shows only the H2O 

peak and little or none of the D2O peak.  The coordinated water cannot be distinguished 

from the interstitial water in any of these spectra. 

 

Figure 2.15 Infrared spectra of Nujol mull of compound 3 (a) which was dehydrated (b) 
then rehydrated with D2O (c). The opposite was done with the perdeutero 3d8 (d) which 
was dehydrated (e) then rehydrated with H2O (f). 

Nuclear Magnetic Resonance. Solid-state nuclear magnetic resonance experiments were 

performed on compounds 3 and 4 to investigate the use of these methods on the single-

crystal to single-crystal transformation. The 1H NMR experiments had poor resolution, 

but some information could still be learned. Fortunately, the 13C NMR spectra have well-

resolved resonances and assignments can be made when coupled with FSLG HETCOR 

(Figure 2.16). The resonances at 15 ppm in the 13C NMR spectra are assigned to the 

methyl group and correlate strongly with the resonance at 1.5 ppm in the 1H NMR 

spectra. The methine carbon has a distinguishing resonance at 60 ppm in the 13C NMR 

spectra that correlates strongly with the resonance at 4.5 ppm in the 1H NMR spectra. The 
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large resonances around 140 ppm are assigned to the aromatic carbons, which correlate to 

the 7 ppm range in the 1H NMR spectra. The naphthalimide carbonyl resonances are 

located at 160 ppm and the carboxylate carbonyl resonances are at 175 ppm. Even though 

3 and 4 share the same assignments, they can be clearly differentiated by their 13C NMR 

spectra. 1H NMR experiments on compounds 3 and 4 show nearly identical spectra, but 

with 3 having a much larger integration at 4.5 ppm than 4. The resonance at 4.5 ppm has 

two components; one from the methine hydrogen of the ligand, as confirmed by 

HETCOR experiments, and the other comes from the water contribution, which has much 

less integration for compound 4. 

This assignment of the water resonance was confirmed by 2H NMR experiments. 

The 2H NMR experiments were carried out on crystals prepared using deuterated 

solvents, D2O and D3COD, to yield the compound 3d8. Initial 2H NMR experiments were 

measured on as-prepared crystals that were not vacuum dried because drying also 

removes the interstitial waters of 3. The fast spinning spectra showed a sharp resonance 

and a small broad resonance that was apparent after deconvolution (Figure 2.17a). By 

slowing down the spin rate the two components split more and it is more obvious (Figure 

2.7b) that there is a sharp and weaker broad component (pake pattern). Because of the 

sharpness of the dominant resonance, indicating that this species is in the fast motion 

limit in the solid-state,14 the sharp component was attributed to adsorbed water on the 

crystals and the broad component to compound 3. In order to confirm this assignment, the 

adsorbed water was removed by drying, thus dehydrating compound 3d8, and rehydrating 

the resulting 4d2 in the presence of D2O vapor restoring compound 3d8, but now with no 

adsorbed water. Spectra of this sample (Figure 2.17c, d) show only the broad peak that 
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had been deconvoluted from the original spectrum of the as-prepared crystals; confirmed 

by chemical shift and similar half height widths of 140 Hz. Due to the broadness of the 

resonance, the interstitial water was found to be indistinguishable from the coordinated 

water by 2H NMR spectroscopy, but the chemical shift assignment made from the 1H 

spectra around 4.5 ppm was confirmed. 

 

Figure 2.16 FSLG HETCOR spectra of compound 3 (a) and 4 (b). 

 

 

Figure 2.17 2H NMR of as prepared 3d8: fast spin (a) and slow spin (b). 2H NMR of 3d8 
after dehydrating and rehydrating in the presence of D2O: fast spin (c) and slow spin (d). 
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Thermal Analysis. Thermal gravimetric analyses of compounds 1-5 under a steady 

stream of dry air are shown in Figure 2.18. Upon heating, compound 1 experiences a 

weight loss between 51 and 181 °C corresponding to the loss of coordinated and 

interstitial water from the compound (7.5%, calcd. 5.6%). Compound 1 remains stable 

upon further heating until reaching the decomposition point of 357 °C, well beyond the 

decomposition point of the protonated ligand, HL ala. At this temperature the solid begins 

to froth so the experiment was terminated. Compound 2 undergoes a similar weight loss 

between 64 and 139 °C corresponding to the loss of interstitial water (6.4%, calcd. 5.6%). 

Compound 2 remains stable until the decomposition point of 249 °C. Compound 3 shows 

a gradual weight loss between 35 and 197 °C corresponding to the loss of coordinated 

and interstitial water (9.0%, calcd. 10.3%) and remains stable until decomposition at 305 

°C. Thermal analysis of compound 5 shows the loss of coordinated water between 104 

and 186 °C (2.6%, calcd. 2.6%) and remains stable until decomposition at 247 °C.  

Rehydration experiments were performed with all compounds by switching to ambient 

air; in the cases of compounds 2 and 5, when crystals were heated well above the 

dehydration point followed by cooling in air, water is reincorporated over a period of ca 

18 hr into the compounds regaining the lost weight (Figure 2.19).  These solids have lost 

single crystallinity in this process, but were shown to retain crystallinity at the end of the 

rehydration by PXRD (see Supporting Information). In similar experiments, compound 3 

does not rehydrate for a week. In this case, PXRD experiments on this heated and 

dehydrated solid of 3 show loss of crystallinity.  
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Figure 2.18 TGA for compounds 1, [Ca(Lala)2(H2O)]·(H2O) (top left), 2, 
[Ca(L ser)2]·(H2O)2 (top right), 3, [Sr(L ala)2(H2O)]·(H2O)3 (bottom left) and 5, 
[Sr(L ser)2(H2O)] (bottom right). 

 

 

Figure 2.19 Removal and reuptake of water from compound 2 (left) and compound 5 
(right). 

 As outlined in the NMR section, 2H NMR experiments indicated that the as-

prepared crystals of 3 contained some adsorbed water. To test for the presence of this 

adsorbed water, TGA analyses were carried out on the as-prepared compound 3d8 that 

had undergone the brief air drying protocol used in the initial NMR experiment and 
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another batch of crystals that had been dried and rehydrated with D2O (3d8→4d2→3d8).  

As shown in Figure 2.20, the weight loss of the two samples was different with the 

weight difference between the two of 0.56% (about 0.3 water molecules per strontium 

cation).  

 

Figure 2.20 TGA of as prepared compound 3d8 (red) and 3d8 after being dehydrated and 
rehydrated in the presence of D2O vapor (black). 

Fluorescence Analysis. Compounds 1-3 and 5 exhibit substantial solid-state fluorescence 

originating from the naphthalimide chromophore in the ligand and their spectra are 

shown in Figure 21. In the case of the L ala
- adducts of the group 2 metals (1 and 3), the 

fluorescence maximum is red-shifted with respect to the ligand and in the case of L ser
- 

adducts of the group 2 metals (2 and 5), the fluorescence maximum is blue-shifted with 

respect to the ligand.
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Figure 2.21 Solid-state fluorescence spectra for compound 1 (top left), 2 (top right), 3 
(bottom left) and 5 (bottom right). The blue lines illustrate the excitation spectrum, the 
green lines represent the emission spectrum, and the red lines signify the fluorescence 
maximum of the protonated form of the ligand from each complex HL ala (1, 3) and HL ser 
(2, 5), respectively. 

Discussion 

 We have prepared a series of compounds from two alkaline earth metals (Ca2+ 

and Sr2+) and L ala
- (Lala*

-) and L ser
- (Scheme 1) ligands, designed for the preparation of 

enantiopure, chiral supramolecular MOFs (SMOFs). Similarly to complexes of these 

ligands with group 1 metals, a consistent structural motif is formed where homochiral 

rod-shaped SBUs dominate the topology and π…π stacking between 1,8-naphthalimide 

rings link adjacent rod SBUs with supramolecular interactions. While the rod structural 

motif is the same in all compounds, there are important differences, including how the 

cations are bridged by carboxylate groups and solvent, the orientation and overlap of the 

naphthalimide rings and whether or not the compounds are porous. The coordination 
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number of the cations that make up the rod-shaped SBU range from seven-coordinate (1) 

to nine-coordinate (5) where the other compounds (2, 3, 3*) are eight-coordinate. All of 

the SBUs rods are homochiral and consist of either edge-shared polyhedra (1-4) or the 

unusual face-shared polyhedra (5). Very few MOFs containing homochiral rod SBUs 

have been reported previously.15 As expected, the structures of 3 and 3*, formed from 

enantiomeric forms of the same ligand, are the same but the rods have opposite helicity. 

 The most prominent structural feature of this work, especially when coupled with 

our previous paper on group 1 metals with the same ligands, is the consistent formation 

of rod SBUs, rods that are necessarily homochiral because of building the ligands from 

enantiopure amino acids.  The s-block metals generally lack the formation of consistent 

SBUs as one varies the metals,12 although it has been pointed out recently that the larger 

metals of group 1 are likely to form rod structures with anionic oxygen donor ligands.16  

With our ligands containing the large, π···π stacking naphthalimide group, we 

consistently observe rods with both group 1 and 2 metals even though the rods are built 

from a variety of bridging oxygen donor motifs, including cases where the only bridge 

comes from the solvent. Nevertheless, the rods consistently form.  In contrast, transition 

metal complexes of these ligands do not form rod SBUs.6,9,10 

 In four of the five compounds (1, 3, 4 & 5), each of the rod-shaped SBUs is 

interlocked with four adjacent rods through π…π stacking in a motif similar to the 

uninodal 4c net if they were covalent connections. In 2, the naphthalimide rings for one 

rod are oriented in a position where two pairs of naphthalimide rings interdigitate with 

two pairs on two adjacent rods resulting in 2D sheets instead of a 3D network. In the case 

of compounds 1 and 3, which are complexes with the L ala
- ligand, there are open 1D 
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channels along the crystallographic c axis that are occupied by disordered solvent. In the 

L ser
- ligand compounds 2 and 5, the introduced alcohol functional group bonds the metal 

decreasing ligand flexibility and impacting the structures. In the calcium complex 2, the 

alcohol in the ligand occupies the coordination sites occupied by the coordinated solvent 

in its analogous alanine analog 1, whereas in the strontium complexes the presence of an 

additional oxygen donor serves to increase the coordination number of the cation when 

compared to the alanine analog 3.  In both complexes with the L ser
- ligand there are no 

channels present.  Finally, of the eight group 1 complexes reported previously and the 

group 2 complexes reported here, only compound 1 exhibits intrarod π…π stacking.   

While compound 1 is unstable in air, compounds 2-5 are robust. When compounds 2 and 

5 were heated in a dry environment they lost water as well as single crystallinity, but 

upon cooling and exposure to atmosphere the lost water was reincorporated into the 

structures, as confirmed by TGA and PXRD. The role of the water is different in both 

compounds, interstitial in 2 and coordinated in 5.  The removal of coordinated and 

interstitial water could not be differentiated in the TGA of 1.  

In a similar way, compound 3 loses bonded and interstitial waters between 64-139 

°C (again not differentiated in the TGA), but in this case the dehydrated solid does not 

readily rehydrate. In contrast, when exposed to a vacuum, compound 3 loses only 

interstitial waters while holding coordinated waters, and retains single crystallinity to 

form 4. In this reversible transformation, the pores in compound 3, which are oriented 

along the crystallographic c-axis, are closed by a contraction along the other two 

crystallographic axes leaving the unit cell volume of 4 reduced by 9%.The flexibility 

needed for this process to take place without loss of single crystallinity is imparted into 
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these solids by the inherent flexibility of the π…π stacking interactions of the 

naphthalimide rings.  As we have discussed before9a,17 and again emphasized by the data 

in Table 2.2, the rings can rotate and/or slip in the solid-state with respect to each other 

(as measured by the dipole angle and slippage parameter χ, respectively ) without any 

large change in the energy associated with the supramolecular forces.  For example, as 

shown in Figure 2.22 for two of the interactions, in the transformation of 3 to 4 the rings 

rotate (91, 127, 64o in 3 versus 71, 70, 52o in 4) and slip (2.79, 0.73, 0.47 Å in 3 versus 

2.98, 0.23, 1.84 Å in 4) to accommodate the reversible loss or gain of water. By 

combining the strong covalent forces of the rod-shaped SBUs with the flexible π…π 

stacking of the naphthalimide supramolecular synthon, the structures of the resulting 

solids can readily adapt to opening or closing of the pores while maintaining single 

crystallinity. This type of “dynamic breathing” for our SMOFs is thus an expected 

consequence of the design of the system. We note that others have reported the use of 

hydrogen bonding interactions to prepare complex structures with mixed covalent/ 

supramolecular interactions with interesting properties.18 

 

Figure 2.22 View of two of the π…π stacking interactions of the naphthalimide rings 
found in compound 3 (left) and 4 (right). Top: the dipole vectors between the rings 
decrease from 127° to 70° accompanied by a slippage parameter decrease of 0.73° to 
0.23°. Bottom: the slippage parameters between the rings increase from 0.47° to 1.84°. 
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We used the preparation of isotopomers (exchanging D2O for H2O) and X-ray 

crystallography, solid-state IR and 1H, 2H and 13C NMR to more closely investigate the 

breathing mechanism of compound 3. Single crystal X-ray diffraction shows that after 

exposing dehydrated 4 to D2O for 24 hours the channels reopen and fill with disordered 

solvent, analogous to the experiments described above with rehydration with H2O. The 

IR spectrum of this compound shows a peak at 2600 cm-1 correlating to the D-O 

stretching and no peak at 3500 cm-1 correlating to H2O, indicating the formation of 3d8. 

This isotopomer can also be made directly by using D2O in the original preparation. This 

cycling of 3→4 →3d8 and also 3d8→4d2→3 showed conclusively there is an exchange 

between the coordinated water and the interstitial waters of 3 during the breathing, even 

though the compound that forms upon dehydration, 4, retains the coordinated water. The 

1H NMR spectrum of both of 3 and of 4 are similar, with the only difference the 

integration of the resonance around 4.5 ppm, which is attributed to the water. This 

resonance assignment was confirmed by the 2H NMR spectra of 3d8. In contrast, the 13C 

NMR spectra of the two compounds are very different and clearly identify the 

compounds.  We note an interesting and potentially confusing observation while 

obtaining the 2H NMR spectra of 3d8.  The initial spectrum of the as prepared sample of 

3d8, synthesized from deuterated solvents but not vacuum dried to prevent the formation 

of 4, was unexpected as it showed a sharp component nearly drowning out the broader 

signal from the compound. The sharp component was determined to arise from adsorbed 

water on the crystals from the solvothermal synthesis. After vacuum/hydration cycling 

the crystals, 3d8→4d2→3d8, the adsorbed water was absent and the 2H NMR spectra had 

only one resonance, showing that the sharp resonance was indeed the adsorbed water. 
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These experiments also show that the coordinated water could not be distinguished from 

the interstitial waters by either IR or 2H NMR.  

 Like most compounds with a 1,8-naphthalimide moiety, compounds 1-5 all 

exhibit significant solid-state luminescence. The fluorescence maxima for compounds 1 

and 3 are red-shifted by 32 and 16 nm, respectively, when compared to the protonated 

ligand, as expected for a typical ligand to metal charge transfer. Interestingly the 

fluorescence maxima for compounds 2 and 5 are blue-shifted by 34 and 48 nm 

respectively. All alkali metal complexes with these same two ligands exhibit the same 

trend of red-shifted fluorescence maxima for L ala
- and blue-shifted for L ser

- complexes.  

Compound 5, the only compound containing face-shared polyhedra, exhibits the most 

blue-shifted maximum of all our compounds to date.7 
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Chapter III 

Cesium complexes of naphthalimide substituted carboxylate ligands: Unusual geometries 

and extensive cation…π interactions 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

__________________________ 

3Adapted with permission from Reger, D. L.;Leitner, A.; Smith, M. D. J. Mol. Struct. 

2015, 1091, 31-36. Copyright 2015 Elsevier. 
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Introduction 

Coordination networks based on cesium cations are poorly understood and under-

researched.1-2 Such compounds generally have high coordination numbers for the large 

cesium cations, mainly with oxygen donors derived from solvents present during the 

synthesis.3-5 When large aromatic groups are present in the ligands, some or all of the 

solvent donors can be excluded from the structures.6-13 In these cases, the more normal 

cesium-oxygen bonds are replaced with interactions between the highly polarizable 

cesium cation and aromatic systems of the organic groups.  

We have previously reported a series of ligands derived from amino acids 

containing the 1,8-naphthalimide group and studied their chemistry with transition.14-16 

and group 1 and 2 metals.17, 18 An important goal of this work is to investigate the impact 

of the 1,8-naphthalimide supramolecular tecton, a group we have shown to enter into 

strong π…π stacking interactions, on the formation of extended structures. Four of these 

ligands, differing in regards to the side-chain of the link between the carboxylate anion 

and a 1,8-naphthalimide functional groups, are pictured in Scheme 3.1. Of particular 

interest here was our reported structure of CsL ala,
17 where the cesium cation is in an O6 

environment, and no solvent was present in the crystal despite a synthetic procedure that 

used both water and methanol.  In the structure, the coordination environment of the 

highly distorted cesium cations appeared to be stabilized by interactions with the methyl 

groups and naphthalimide groups in the ligands.  In contrast, the complex CsL ser has a
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regular structure where the “designed ligand modification” of building into the ligand an 

additional alcohol donor group satisfies the cesium coordination sphere.17 

 

Scheme 3.1Multifunctional Ligands 

 These results prompted additional efforts to prepare complexes of this family of 

ligands with cesium cations.  Reported here are the syntheses, fluorescence and X-ray 

crystal structures of the cesium complexes Cs(L gly) and Cs(L ene), the latter forming from 

the dehydration of  the ligand L ser
- during the synthesis. Both complexes show extensive 

interactions between the cesium cations and hydrocarbon groups in the ligands, as well as 

extensive supramolecular interactions between the strongly π…π stacking naphthalimide 

supramolecular tectons.  

Experimental 

All reactants and solvents were used as purchased from Aldrich and Strem. Elemental 

analyses were performed by Robertson Microlit Laboratories (Ledgewood, NJ). The 

fluorescence spectra were recorded on a Perkin-Elmer LS 55 fluorescence spectrometer. 

Single-crystal samples were ground into a 6 mm cell and a 1% attenuator was used for all 

measurements. The syntheses of HL gly and HL ser were reported previously.19, 20 

Synthesis of Cs(Lgly) (1) 

Cesium hydroxide hydrate (0.500 g, ca. 2.5 mmol) was dissolved in water (20 mL). HL gly 

(0.681 g, 2.67 mmol) was added and the reaction mixture stirred until homogeneous. The 
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solvent was removed and the remaining powder dried in vacuo to produce a yellow 

powder (0.984 g). A 9 mL thick walled glass tube with a Teflon stopcock was charged 

with the solid (0.10 g) and ethanol (2.0 mL) and heated at 120 °C overnight or until the 

solution became homogenous. The heat was removed and the system was allowed to 

slowly cool at a rate of about 1°C/min. Over the course of 3 hours needle crystals grew 

from the solution and were collected from the tubes and dried over filter paper to provide 

0.080 g of light brown single crystals. Anal. Calcd. (Found) for C14H8CsNO4: C 43.44 

(43.58); H 2.08 (2.09); N 3.62 (3.47). 

Synthesis of Cs(Lene) (2) 

HL ser (0.761 g, 3.5 mmol) was added to a solution of cesium hydroxide hydrate (0.500 g, 

ca. 2.5 mmol) in water (20 mL) and stirred for an hour until homogeneous. The solvent 

was removed and the precipitate dried in vacuo to produce a light yellow powder (1.017 

g). A 9 mL thick walled glass tube with a Teflon stopcock was charged with the solid 

(0.10 g) and ethanol (2.0 mL) and heated at 120 °C. Over the course of heating for 6 

hours, colorless platelike crystals grew on the walls of the tube above the solvent line. 

The heat was removed and the system was allowed to slowly cool at a rate of about 

1°C/min. Crystals were collected from the walls of the tubes and dried over filter paper to 

provide 0.015 g of single crystals. Anal. Calcd. (Found) for C15H8CsNO4: C 45.14 

(44.80); H 2.02 (1.96); N 3.51 (3.45). 

Isolation of HLene 

Single crystals of 2 (0.050 g, 0.12 mmol) were added to water (10 mL) and mixed until 

homogeneous. The solution was acidified with 3M HCl and the resulting white 

precipitate was isolated via gravity filtration and washed with water and dried in vacuo to 
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yield 0.028 g (88%) of HL ene. HRMS: DP+ (m/z): Calcd for [C15H9NO4]
+ 267.0532; 

found 267.0528. 1H NMR ((D3C)2SO, 300 MHz) δ 8.52 (dd, 4H, nphth), 7.91 (t, 2H, 

nphth), 5.71 (m, 1H, methylene), 4.90 (m, 1H, methylene). 

Crystallographic Study 

 Crystal data and data collection and refinement parameters for 1 and 2 are given 

in Table 3.1. X-Ray intensity data were collected at 100(2) K using a Bruker SMART 

APEX diffractometer (Mo Kα radiation, λ = 0.71073 Å) [21, 22]. The raw area detector 

data frames were reduced and corrected for absorption effects with the SAINT+ and 

SADABS programs.21, 22 Final unit cell parameters of 1 were determined by least-squares 

refinement of 8986 reflections from the data set. Final unit cell parameters of 2 were 

determined by least-squares refinement of 3216 reflections from the data set. Direct 

methods structure solution, difference Fourier calculations and full-matrix least-squares 

refinement against F2 were performed with SHELXS/L2 as implemented in OLEX2.23  

Compound 1 crystallizes in the space group C2/c as determined by the pattern of 

systematic absences in the intensity data and by the successful solution and refinement of 

the structure. The asymmetric unit consists of two cesium atoms and one ligand. Both 

cesium atoms are located on special positions and therefore are each shared between two 

asymmetric units: Cs1 is located on an inversion center and Cs2 is located on a two-fold 

axis of rotation.  

Compound 2 crystallizes in the space group P21/n as determined by the pattern of 

systematic absences in the intensity data. The asymmetric unit consists of one cesium 

atom and one ligand.  The largest electron density peak remaining in the final difference 

map (3.75 e-/Å3) is located 0.87 Å from the cesium atom. For both compounds non-
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hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms 

were placed in geometrically idealized positions and included as riding atoms. 

Table 3.1. Crystallography Data. 

1 2
Formula C14H8CsNO4 C15H8CsNO4 

Fw, g mol-1 387.12 399.13
Cryst. Syst. Monoclinic Monoclinic
Space group C2/c P21/n 

T, K 100(2) K 100(2) K
a , Å 30.430(7) 13.6049(15) 
b , Å 4.9820(12) 6.8100(8) 
c , Å 16.566(4) 14.4187(16) 
α, deg 90 90
β , deg 101.951(4) 105.345(2) 
γ, deg 90 90

V , Å3 2457.0(10) 1288.3(3) 
Z 8 4

Data/restraints/parameters 3067/0/183 2617/0/190
Final R indexes [I>=2σ (I)]a,b

R1=0.0224 wR2=0.0549 R1=0.0441 wR2=0.0979

Final R indexes [all data] R1=0.0240 wR2=0.0557 R1=0.0529 wR2=0.1021

Largest diff. peak/hole / e Å-3 0.64/-0.42 3.75/-1.18  

Mo Kα radiation, λ = 0.71073 Å. aR1 = Σ ||Fo| - |Fc|| / Σ |Fo|, 
bwR2 = { Σ [ w(Fo

2-Fc
2)2 ] / 

Σ [ w(Fo
2)2 ] } 1/2  

Results  

 Syntheses. Mixing HL gly and HL ser with CsOH in water produced Cs(L gly) and 

Cs(L ser). Single crystals of Cs(L gly) (1) were grown from heating the powder of Cs(L gly) 

under solvothermal conditions in ethanol. Heating the powder of Cs(L ser) in ethanol 

under solvothermal conditions resulted in the dehydration of the ligand forming single 

crystals of Cs(L ene) (2) on the walls of the reaction vessel above the solvent line. We note 

that our previous preparation of crystalline Cs(L ser) was the same as that reported here for 

Cs(L ene), except methanol was used for the solvothermal step.17 In determining the 
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structures of both 2 and Cs(L ser), multiple crystals were mounted and the unit cell 

determined showing the sample was homogenous. We also isolated HL ene in high yield 

from the decomposition of Cs(L ene).  The reasons for the dehydration of L ser
- in ethanol 

are not clear, especially given that we have previously heated mixtures of other group 1 

and 2 metals and L ser
- under a variety of solvothermal conditions and observed no 

dehydration of the ligand.17, 18, 20 

Solid State structure of 1.  The coordination environments for both unique 

cesium cations are shown in Figure 3.1. The Cs2 cations are coordinated by six oxygen 

atoms from µ3-κ3:κ2 carboxylates in an unusual O6 planar arrangement. The carboxylate 

oxygen atoms (O3) from two L gly
- ligands bridge Cs2 cations generating chains of edge-

shared polyhedra extending along the crystallographic b axis. A second chain of edge-

shared polyhedra (-Cs1-Cs2-Cs1-Cs2-) extends along the crystallographic c axis bridged 

by carboxylate oxygens (O3 and O4) to generate a two-dimensional sheet parallel to the 

crystallographic bc plane. The Cs1 cations are in an octahedral environment where O3 

and O4 are in an equatorial belt and the axial sites are occupied carbonyls of the 

naphthalimide groups (O2), forming seven-member rings.  

The hexagonal O6-coordination geometry around the Cs2 cation is highly planar 

(Figure 3.2), where the least-squares plane has an average deviation of 0.019(3) Å, 

creating two open faces that are occupied by edges of the naphthalimide ring (C11, C12, 

H11, and H12) on either side. These interactions are identified as η2-coordination because 

of the short bond Cs-C distances (3.22 - 3.78 Å). Similar reported cesium carbon 

interactions are between 3.20 and 4.17 Å.6-13 
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In addition to these cation-π interactions, the 1,8-naphthalimide rings are involved 

in a unique form of π…π stacking. As we have outlined previously,24 these relatively 

strong interactions are defined by a series of metrics: the angle made by the planes of the 

two rings and the separation; the overlap of the rings as measured by the “slippage” 

parameter χ, which is the third side of the right triangle formed with the average 

perpendicular distance between the rings and the line joining the central fused ring 

carbon atoms of the two rings; and the rotation angle made by the two naphthalimide 

dipole vectors, which run through the central ring carbon atoms, pointing toward the 

nitrogen. As can be seen in Figure 3.3a, the orientation of the naphthalimide rings that 

results from the coordination of one of the carbonyl oxygen atoms with Cs1 and the η2-

interaction with Cs2 leads to intra-sheet π…π stacking interactions where the average 

distance between the parallel rings is 3.30 Å, an indication of a relatively strong 

interaction, but the slippage parameter is fairly large at 3.73 Å (stronger interactions are 

below 3.0 Å).14-16 

The unusual feature of the interaction is that the rings are oriented head to head 

with a dipole vector rotation angle of zero. We have previously shown that the strength of 

the interaction is not very sensitive to this rotation angle unless it is very small – our 

previous low value is 35°.24 This potentially negative force is negated in compound 1 by 

the large slippage parameter, where all of the slippage is along the aligned dipole vectors, 

such that the nitrogen atoms are oriented over the aromatic rings and not the nitrogen 

from adjacent rings, Figure 3.3b.  Because of the intra-sheet π…π stacking of the 

naphthalimide rings, there is no strong interaction between sheets. 
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Figure 3.1. Coordination environment for cesium in Cs(L gly) (1). 

 

Figure 3.2. Coordination environment of Cs2 from Cs(L gly) (1) with thin gold lines 
highlighting η2 interactions with 1,8-naphthalimide rings. 
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Figure 3.3. (a) View along the crystallographic b axis of a sheet of Cs(L gly) (1). (b) View 
showing intra-sheet head to head π…π stacking and slippage of the naphthalimide rings. 

Solid State structure of 2.  The irregular coordination environment for the 

cesium cations in Cs(L ene) (2) is shown in Figure 3.4. Each cation is 6-coordinate, bonded 

by four different ligands, three of which are involved in bridging the cations into rods 

through µ-κ2:κ2 carboxylates extending along the crystallographic b axis. The L ene
- ligand 

that is chelated to a given cesium cation also bonds to that cesium through a 

naphthalimide carbonyl (O2) making seven membered rings. As shown in Figure 3.5, the 

sixth site on each cesium cation is filled by a naphthalimide carbonyl (O1) from an 

adjacent rod. These interactions bridge parallel rods into two-dimensional sheets along 

the (1 0-1) crystallographic plane.  

  Figure 5 also shows the most interesting feature of the structure. Each methylene 

group, which forms by elimination of water, is located between two cesium cations from 
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adjacent rods that are linked by the bridging naphthalimide carbonyl (O1). There are two 

types of interactions. In one case the C14-Cs1 distance is 3.58 Å and the C13-Cs1 

distance is 3.81 Å; this interaction is best described as η2-coordination. A second Cs1 

from an adjacent rod interacts with the other face of the same methylene group, the C14-

Cs1 distance is 3.67 Å, but the C13-Cs1 distances is long at 4.34 Å, indicative of an η1-

interaction.25-27 Each of the highly distorted cesium cations makes an interaction of each 

type from its open face to two different methylene groups, one intra-rod and one inter-

rod. These bridging µ-η2:η1 interactions with each methylene group support the O1-

linkage of the rods into sheets.  

The 2D sheets are held together into a 3D supramolecular structure by 

interdigitated 1,8-naphthalimide rings involved in strong π…π interactions, Figure 3.6a. 

The rings in any stack are parallel with an average distance of 3.32 Å and the dipole 

angle between the rings is 180°.  As seen in Figure 3.6b, there is a moderately large 

slippage parameter of 2.62 Å. 

 

Figure 3.4. Rods of Cs(L ene) (2). 
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Figure 3.5. Coordination environment in Cs(L ene) (2) showing the linkage of the rods 
into sheets by interactions of naphthalimide carbonyl groups with cesium cations in 
adjacent rods and the η2:η1-interactions between cesium cations and the methylene 
groups. Adjacent rods are tinted red, yellow and blue respectively. 

 

Figure 3.6. (a) View parallel to the crystallographic (1 0 -1) plane of Cs(L ene) (2) 
showing the “zipper-like” π...π stacking interactions between differently colored sheets. 
(b) View along the b axis showing the overlap of naphthalimide rings 

Fluorescence 

The fluorescence spectra for both compounds were compared to the protonated ligands of 

each complex, HL gly for 1 and HL ene for 2. The protonated ligands have similar spectra 

with fluorescence emission maxima (λmax,Fl) at 447 and 475 nm, respectively. The spectra 
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for compound 1 is slightly red-shifted (λmax,Fl = 453nm) and the spectra for compound 2 is 

slightly blue-shifted (λmax,Fl = 450nm). 

 

Discussion 

Both new compounds reported here form solid-state 2D sheet structures of cesium 

cations linked by oxygen donors, with naphthalimide rings located on each side of the 

sheets. Similar arrangements were observed in our previously reported compounds 

Cs(L ala) and Cs(L ser).
17, 18 An interesting feature is that none of the four compounds have 

solvent ligands originating from the polar, water/alcohol solvents used in the 

preparation/crystallization, a feature that appears common with ligands that contain the 

large “lipophilic” naphthalimide group.17, 18, 20, 25 

In all cases, the cesium cations have a relatively low coordination number of 

six.17, 18 Despite having the same coordination number, a variety of coordination 

geometries are observed. In Cs(L ser), the cations are in a fairly regular trigonal prismatic 

coordination environment and the Cs1 sites in Cs(L gly) are in a distorted octahedral 

environment. In contrast, the Cs(L ene) and Cs(L ala) cations have coordination spheres that 

are slightly over half-filled with oxygen atoms such that there is a large open face in 

each. The Cs2 sites in Cs(L gly) are very unusual, where the geometry of the oxygen donor 

atoms is hexagonal planar and the cation has two open faces. 

In these three cases of cesium cations with large open faces in the coordination 

sphere, the empty spaces are filled by interactions with hydrocarbon moieties in the 

ligands. Each type of interaction is different. In Cs(L ala), there is an interaction with the 

edge of a naphthalimide group and there are also unusual agostic C-H interactions with 
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the methyl group of the ligand, having short Cs-C distances (3.66 Å) and small Cs…H-C 

angles (109-112°). We note agostic interactions between cesium cations and methyl 

groups have been suggested previously.6-8 As outlined above, η2-coordination from the 

edge of naphthalimide groups occupy the two faces of planar Cs2 and a combination of 

η2- and η1-interactions with methylene groups occupy the open faces in Cs(L ene).
  Overall, 

the distorted geometries observed for these cesium cations appear to be a result of the 

propensity of this polarizable cation to interact with π and even σ orbitals in the ligands; 

the former interactions have been termed “solvation.”6-13 

Finally, a driving force for the chemistry reported from our group using ligands 

such as pictured in Scheme 3.1 is a study of the consequences of the supramolecular 

organizing force of the strong π…π stacking of the naphthalimide groups. These forces do 

organize the 2D structure of Cs(L ene) (2) into a supramolecular 3D structure, as was 

observed in both Cs(L ala) and Cs(L ser). In contrast, the stacking interactions in Cs(L gly) 

are intra-sheet leaving the structure as 2D. The observed intra-sheet π…π stacking of 

naphthalimide rings with aligned dipole vectors present in compound 1 were predicted 

via ab initio calculations to be unfavorable, but those calculations had a slippage 

parameter of zero.24 In Cs(L gly), these predicted unfavorable interactions are avoided by 

the large slippage value (3.73 Å) along the aligned dipole vectors. 

The solid state fluorescence spectra for these solids were compared to the 

protonated forms of their respective ligands and show slightly red-shifted emission 

maxima for Cs(L ala) and Cs(L gly) and blue-shifted emission maxima for Cs(L ser) and 

Cs(L ene).  This fluorescence is based on the naphthalimide group28, 29 and is not greatly 

perturbed by the interactions this group has with the cesium cations. 
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Chapter IV 

Homochiral, Helical Coordination Complexes of Lanthanides(III) and Mixed-Metal 

Lanthanides(III): Impact of the 1,8-Naphthalimide Supramolecular Tecton on Structure, 

Magnetic Properties and Luminescence 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

__________________________ 

4Adapted with permission from Reger, D. L.; Leitner, A.; Smith, M. D. Cryst. Growth 

Des. 2015, 15(11), 5637-5644. DOI: 10.1021/acs.cgd.5b01387 Copyright 2015 American 

Chemical Society. 
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Introduction  

We have been developing the coordination chemistry of ligands functionalized 

with the naphthalimide π...π stacking supramolecular tecton.1–10 In our initial studies with 

poly(pyrazolyl)methane ligands, we showed that the naphthalimide tecton is an effective 

functional group to organize supramolecular structures.2 We then developed the 

chemistry of naphthalimide functionalized carboxylate ligands such as those pictured in 

Scheme 1 in order to take advantage of the well-established ability of the carboxylate 

donor group to build metal ions into secondary building units (SBUs), in order to form 

three-dimensional assemblies akin to metal-organic frameworks (MOFs).5,11  

NO O NO O NO ONO O

O

O

LC2
-

LC4
- Lala

-
Lser

-

NO O

O

O

LC1
-

OO

O O

OOH

O

NO O
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N

N

O

O

L*ala
-

 

Scheme 4.1. Multifunctional Ligands 

In the complexes formed with transition metal ions, most notably those with 

“paddlewheel” M2(O2CR)4 central cores, complexes with 2-dimensional (2D) and mainly 

3-dimensional (3D) structures were prepared that were similar in appearance to classical 

MOF complexes, but that were unique in that one or more of the dimensions of the 

structures were organized solely by strong π...π stacking, noncovalent forces.1,3,5,7 We call
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these structures supramolecular metal-organic frameworks (SMOFs). A unique feature of 

many of these complexes, clearly attributed to the versatility of the π...π stacking ability 

of the naphthalimide supramolecular synthon, was that many of them were able to 

undergo gas-solid, single-crystal to single-crystal transformations, both by removal and 

reabsorption of solvent molecules,3–5,9 in some cases coordinated solvent,3,8 and in phase 

changes when varying the temperature.5 Our studies showed that in these transformations 

the metrics of the π...π stacking interactions could vary allowing the structures to “breath” 

while still maintaining crystallinity.5,8,9  

More recently we have described the chemistry of these ligands, most notably 

those derived from enantiopure amino acids such as L ala
- and L ser

-, with the oxophilic 

group 1 and 2 metals.8–10 The structures of these complexes are dominated by the 

consistent formation of helical rod SBUs, rods that are homochiral due to their formation 

from enantiopure ligands. An interesting feature of these complexes was low 

coordination numbers for these large metal ions and the absence or near absence of 

solvent ligands, despite the fact that the preparations were carried out in water/alcohol 

solvents, an apparent general feature of ligands that contain bulky “lipophilic” 

groups,10,12 such as 1,8-naphthalimide.8–10 

These results prompted us to carry out analogous studies with lanthanide metals.  

We had two main goals.  The first was quite simple; what type of structural changes 

would we observe with metals in the 3+ oxidation state interacting with our bulky π...π 

stacking, carboxylate ligands. The second relates to the spectral properties of the 1,8-

naphthalimide chromophore. We have previously reported that the group 1 and 2 metal 

complexes of these ligands exhibit significant solid-state luminescence that was only 
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mildly influenced by these metals.8–10  In contrast, we anticipated that the naphthalimide 

group could act as a sensitizer to enhance or diminish the photoluminescence of 

lanthanide metals.13–16 Our earlier results showing the ability of these ligands to exclude 

solvent molecules was important because coordinated solvent molecules can quench 

lanthanide-based luminescence.17,18   Interestingly, a recent paper published after the 

initiation of our studies has shown success of lanthanide complexes of our LC1
- and LC2

- 

ligands (Scheme 4.1) in “achieving white-light-emissions.”13  

Mixed-metal lanthanides are highly desirable for new photoluminescence 

lanthanide complexes because each metal has a different emission color which, when 

combined, can create a solid with a tunable emission spectrum.14 Although desirable, 

solid state structures of mixed-metal complexes are somewhat rare because the syntheses 

generally lead to mixed phases rather than a pure phase of a mixed metal complex.19 Two 

successful avenues for incorporating mixed metal lanthanides into MOF structures are: a 

known framework can act as a host to lanthanide cation guests or mixed metal 

lanthanides comprise the SBUs.20,21 

Reported here are the syntheses and solid state structures of complexes of a series 

of lanthanide(III) metals (La, Ce, Sm, Eu, Gd, Tb and Dy) with the ligand L ser
-.  These 

complexes show a consistent structure type despite large differences in the cationic radii 

of the metals. The structures are so similar that single crystals of mixed lanthanide(III) 

metal complexes could be prepared and studied, where the stoichiometric ratios of metals 

in the final products are controlled somewhat by the relative molar ratios used in the 

reactions. The luminescence spectra for the pure-metal compounds were studied and 

compared to those of the protonated ligand, HL ser. A series of mixed-metal compounds, 
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mainly with varying concentrations of cerium(III) and terbium(III), were studied to 

determine the effects of these changes on quantum yields. Representative compounds, 

including those of mixed-metals, are also characterized magnetically by SQUID 

measurements. 

 

Experimental 

All reactants and solvents were used as purchased from Aldrich and Strem. Samples of 

mixed lanthanide(III) metals were analyzed using a Finnigan ELEMENT XR double 

focusing magnetic sector field inductively coupled plasma-mass spectrometer (ICP-MS). 

The elemental composition of single crystals of mixed-metal complexes was verified 

using a TESCAN Vega-3 SBU SEM with EDS capabilities. Three single crystals from 

each reaction were mounted on carbon tape and analyzed using a 20 kV accelerating 

voltage and an accumulation time of 1 min. Excitation and emission spectra as well as 

Quantum Yield were collected and duplicated three times with an Edinburgh 

SpectroFluorometer FS5. Magnetic properties were collected on a Quantum Design 

Magnetic Properties Measurement System (QD-MPMS 3 SQUID Magnetometer). 

Molecular weights for the compounds in the yields and susceptibility calculations were 

based on the single crystal X-ray data and did not include the interstitial solvent removed 

by SQUEEZE. The synthesis of HL ser was reported previously.8 

 

Synthesis of [La3(Lser)8(OH)(H2O)]•(H2O, EtOH)x  (1) 

HL ser (1.0 g, 3.5 mmol) was added to a solution of lithium hydroxide hydrate (0.15 g, 3.5 

mmol) in water (50 mL) and stirred for an hour until homogeneous. The solvent was 
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removed and the precipitate dried in vacuo to produce LiL ser as a light yellow powder 

(0.868 g, 2.98 mmol). A 9 mL thick walled glass tube with a Teflon screw top was 

charged with lanthanum nitrate hexahydrate (0.030 g, 0.069 mmol), LiL ser (0.050 g, 0.14 

mmol), water (0.8 mL) and ethanol (0.2 mL) then heated in an oil bath at 120 °C. Yellow 

plate crystals grew over the course of 4 days on the walls of the reaction vessel above the 

solvent line. The heat was removed and the crystals were collected from the tube, washed 

with methanol and dried over filter paper to provide 0.060 g of single crystals of 1 in a 

62% yield.  

 

Synthesis of [Ce3(Lser)8(OH)(H2O)]•(H2O, EtOH)x (2) 

Compound 2 was synthesized in a similar manner to compound 1 but with cerium nitrate 

hexahydrate (0.030 g, 0.069 mmol). Yellow plate crystals grew overnight on the walls of 

the reaction vessel above the solvent line. The heat was removed and the crystals were 

collected from the tube, washed with methanol and dried over filter paper to provide 

0.043 g of single crystals of 2 in a 67% yield.  

 

Synthesis of [Sm3(Lser)8(OEt)]•(H2O, EtOH)x (3)  

Compound 3 was synthesized in a similar manner to compound 1 but with samarium(III) 

chloride hexahydrate (0.030 g, 0.082 mmol). The resulting colorless block crystals were 

collected and washed with methanol to yield 0.036 g of 3 in a 60% yield.  
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Synthesis of [Eu3(Lser)8(OEt)]•(H2O, EtOH)x (4)  

Compound 4 was synthesized in a similar manner to compound 1 but with europium 

nitrate pentahydrate (0.030 g, 0.070 mmol). The resulting colorless block crystals were 

collected and washed with methanol to yield 0.013 g of 4 in a 22% yield.   

 

Synthesis of [Gd3(Lser)8(OEt)]•(H2O, EtOH)x (5)  

Compound 5 was synthesized in a similar manner to compound 1 but with gadolinium 

nitrate hexahydrate (0.030 g, 0.066 mmol). The resulting colorless block crystals were 

collected and washed with methanol to yield 0.021 g of 5 in a 34% yield.  

 

Synthesis of [Tb3(Lser)8(OEt)]•(H2O, EtOH)x (6)  

Compound 6 was synthesized in a similar manner to compound 1 but with terbium nitrate 

hexahydrate (0.030 g, 0.066 mmol). The resulting colorless block crystals were collected 

and washed with methanol to yield 0.022 g of 6 in a 36% yield.  

 

Synthesis of [Dy3(Lser)8(OEt)]•(H2O, EtOH)x (7)  

Compound 7 was synthesized in a similar manner to compound 1 but with dysprosium 

nitrate hexahydrate (0.030 g, 0.066 mmol). The resulting yellow pyramidal crystals were 

collected and washed with methanol to yield 0.021 g of 7 in a 34% yield.  

 

Synthesis of [Ce2.3Tb0.7(Lser)8(OH)]•(H2O, EtOH)x (8) 

Synthesis of the mixed metal species were the same as compound 1 but with cerium 

nitrate hexahydrate (0.024 g, 0.055 mmol) and terbium nitrate hexahydrate (0.006 g, 
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0.014 mmol). The resulting colorless block crystals were collected and washed with 

methanol to yield 0.022 g of 8 in a 37% yield. 

 

Synthesis of [Gd0.4Tb2.6(Lser)8(OEt)]•(H2O, EtOH)x (9) 

Compound 9 was synthesized in a similar manner to compound 1 but with terbium nitrate 

hexahydrate (0.015 g, 0.033 mmol) and gadolinium nitrate hexahydrate (0.015 g, 0.033 

mmol). The resulting colorless block crystals were collected and washed with methanol 

to yield 0.012 g of 9 in a 20% yield. 

 

Synthesis of [Ce1.4Gd0.3Tb1.3(Lser)8(OH)]•(H2O, EtOH)x (10) 

Compound 10 was synthesized in a similar manner to compound 1 but with cerium 

nitrate hexahydrate (0.010 g, 0.023 mmol), gadolinium nitrate hexahydrate (0.010 g, 

0.022 mmol) and terbium nitrate hexahydrate (0.010 g, 0.022 mmol). The resulting 

colorless block crystals were collected and washed with methanol to yield 0.022 g of 10 

in a 37% yield.  

 

Powder X-Ray Diffraction 

In order to test for phase purity of the crystalline products, samples of compounds 

1-10 were collected from the walls of the solvothermal tubes, washed with acetone and 

ground in air. All measurements were performed on a Rigaku Ultima 4 instrument using 

Cu Kα radiation at a scan rate of 1 °/min between 4 and 30 °2θ with a step size of 0.02 

°2θ. Powder patterns were analyzed using Microsoft Excel and were compared to the 
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powder patterns predicted by Mercury based on the single crystal data.  These powder 

patterns demonstrate phase purity for 1-10. 

 

Crystallographic Study 

Crystal data and data collection and refinement parameters for all compounds are 

given in Table 4.1. X-Ray structure determinations are discussed in detail in the 

Supporting Information. 

Table 4.1. Crystallography Data.  

  1 2 3 4 

Formula C120H91La3N8O46 C120H91Ce3N8O46 C122H93N8O45Sm3  C122H93Eu3N8O45 

Fw, g mol-1 2797.73 2801.36 2842.09 2846.92 
Cryst. Syst. Tetragonal Tetragonal Tetragonal Tetragonal 

Space group P43212 P43212 P43212 P43212 

T, K 100(2) K 100(2) K 100(2) K 100(2) K 

a, Å 15.0506(6) 15.0749(10) 14.9573(9) 14.9044(10) 

b, Å 15.0506(6) 15.0749(10) 14.9573(9) 14.9044(10) 

c, Å 55.721(2) 55.646(7) 55.690(3) 55.800(4) 

α, deg 90 90 90 90 

β, deg 90 90 90 90 

γ, deg 90 90 90 90 

V, Å3 12621.9(11) 12646(2) 12459.1(17) 12395.4(19) 

Z 4 4 4 4 

R1(I>2σ (I))a 0.0502 0.0368 0.0326 0.0304 

wR2(I>2σ (I))b 0.0970 0.0894 0.0723 0.0657 

Flack Parameter -0.001(6) -0.014(5) -0.005(4) -0.004(3) 
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  8 9 10 

Formula C120H89Ce2.3N8O45Tb0.7  C122H93Gd0.4N8O45Tb2.6 C120H89Ce1.4Gd0.3N8O45Tb1.3 

Fw, g mol-1 2797.16 2867.20 2812.79 
Cryst. Syst. Tetragonal Tetragonal Tetragonal 

Space group P43212 P43212 P43212 

T, K 100(2) K 100(2) K 100(2) K 

a,  Å 14.8679(16)  14.9095(6)  14.9837(7)  

b,  Å 14.8679(16)  14.9095(6)  14.9837(7)  

c, Å 55.353(6)  55.729(4)  55.753(5)  

α, deg 90 90 90 

β, deg 90 90 90 

γ, deg 90 90 90 

V, Å3 12236(3)  12388.3(13) 12517.3(17)  

Z 4 4 4 

R1(I >2σ (I))a 0.0548 0.0378 0.0411 

wR2( I>2σ (I))b 0.1137 0.0748 0.0975 

Flack Parameter -0.007(11) -0.009(5) -0.007(4) 
  

aR1 = Σ ||Fo| - |Fc|| / Σ|Fo|  
bwR2 = { Σ [ w(Fo

2-Fc
2)2 ] / Σ [ w(Fo

2)2 ] } 1/2  

  

  5  6 7 

Formula  C122H 93 Gd3N8 O45   C122H93N8O45Tb3   C122H 93 Dy3N8O45  

Fw, g mol-1  2862.79  2867.80 2878.54  
Cryst. Syst. Tetragonal  Tetragonal Tetragonal  
Space group  P 43 21 2  P 43 212  P 43 21 2 

T, K 100(2) K 100(2) K  100(2) K 
a , Å 14.9247(8)   14.9043(7) 14.9189(5)  
b , Å 14.9247(8)   14.9043(7) 14.9189(5)  
c , Å 55.654(6)  55.841(5)  55.485(4)  
α, deg 90   90 90   
β, deg 90   90 90   
γ, deg 90   90 90   
V , Å3 12396.7(18) 12404.5(16)   12349.5(12)  

Z  4  4 4 

R1(I >2σ (I ))a
 0.0424 0.0394   0.0539 

wR2(I >2σ (I ))b 
  0.0938 0.0891   0.1223 

Flack Parameter  0.009(4) -0.001(4) 0.012(5)  
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Results  

Syntheses of complexes. Mixing HL ser with LiOH in water produced LiL ser. Heating 

mixtures of LiL ser in ethanol/water with La(NO3)3•6H2O, Ce(NO3)3•6H2O, SmCl3•6H2O, 

Eu(NO3)3•5H2O, Gd(NO3)3•6H2O, Tb(NO3)3•6H2O and Dy(NO3)3•6H2O under 

solvothermal conditions produced single crystals of [La3(L ser)8(OH)(H2O)]•(H2O, EtOH)x 

(1), [Ce3(L ser)8(OH)(H2O)]•(H2O, EtOH)x (2), [Sm3(L ser)8(OEt)]•(H2O, EtOH)x (3), 

[Eu3(L ser)8(OEt)]•(H2O, EtOH)x (4),  [Gd3(L ser)8(OEt)]•(H2O, EtOH)x (5), 

[Tb3(L ser)8(OEt)]•(H2O, EtOH)x  (6) and [Dy3(L ser)8(OEt)]•(H2O, EtOH)x (7), 

respectively. An interesting observation of our synthetic method is that the crystals grow 

above the solvent line in the solvothermal tubes.   

The mixed-metal compounds [Ce2.3Tb0.7(L ser)8(OH)]•(H2O, EtOH)x (8), 

[Gd0.4Tb2.6 (L ser)8(OEt)]•(H2O, EtOH)x (9) and [Ce1.4Gd0.3Tb1.3(L ser)8(OH)]•(H2O, 

EtOH)x (10) were grown under the same conditions as 1-7, and characterized by single 

crystal X-ray crystallography, ICP-MS and EDS. A variety of additional reactions were 

carried out using different molar ratios of the lanthanide(III) metals and the formulas of 

the crystalline products determined by ICP-MS. Table 4.2 compares the percentages used 

in the syntheses to the actual percentages determined in the products in all of these 

experiments. EDS measurements showed a consistent distribution of the metals at 

different locations in the crystals. 
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Table 4.2. Formulas of products and percentages of metals used in the syntheses (R) and 
measured in the products per helicate (P). 

Compound 
Ce Sm Eu Gd Tb 

R P R P R P R P R P 

Ce1.4Gd0.3Tb1.3 33% 47% - - - - 33% 10% 33% 43% 

Gd0.4Tb2.6 - - - - - - 50% 13% 50% 87% 

Ce0.3Tb2.7 21% 10% - - - - - - 79% 90% 

Ce0.8Tb2.2 34% 27% - - - - - - 66% 73% 

Ce1.6Tb1.4 57% 53% - - - - - - 43% 47% 

Ce1.9Tb1.1 68% 63% - - - - - - 32% 37% 

Ce2.4Tb0.6 81% 80% - - - - - - 19% 20% 

Eu1.5Tb1.5 - - - - 51% 50% - - 49% 50% 

Eu2.6Gd0.4 - - - - 51% 87% 49% 13% - - 

Ce1.6Eu1.4 50% 53% - - 50% 47% - - - - 

Sm1.8Eu1.2 - - 54% 60% 46% 40% - - - - 

Sm1.5Tb1.5 - - 55% 50% - - - - 45% 50% 

Ce1.4Sm1.6 46% 47% 54% 53% - - - - - - 

 

Solid state structure of [Sm3(L ser)8(OEt)]•(H 2O, EtOH)x (3).  The solid state structure 

of compound 3 is a supramolecular framework of trinuclear, carboxylate bonded helicates 

that crystallizes in the chiral space group P43212. The 1,8-naphthalimide π...π stacking 

synthons organize the helicates into a 3D, supramolecular structure. There is a 

crystallographically imposed two-fold axis of rotation about the central samarium(III) 

cation (Sm2). The C2 axis in the center of the helicate renders the two terminal 
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samarium(III) cations equivalent and creates two symmetrical sets of four ligands, A-D 

and A*-D*, totaling eight ligands per helicate (Figure 4.1). The homochiral helicates 

consist of three edge-shared samarium(III) cations with six bridging L ser
- ligands (A, A*, 

B, B*, D, D*) and two capping κ1, κ1-carboxylate L ser
- ligands (C, C*). The A ligand 

bridges Sm1 with Sm2 via µ2-κ1:κ2
 carboxylate and the alcohol chelates to Sm1 

generating a 6-membered ring. The B ligand similarly bridges Sm1 and Sm2 but through 

a µ-κ1:κ1 carboxylate while the alcohol does not coordinate to a metal. The D ligand 

bridges all three metals Sm1, Sm1* and Sm2 through a µ3-κ1:κ2 carboxylate while 

chelating with Sm1 via the alcohol and a carbonyl from the 1,8-naphthalimide forming a 

[3.2.2] bicyclic system. The nine-coordinate Sm1 cations are each bonded to five ligands 

(A, B, C, D & D*), while the central nine-coordinate Sm2 cation is bonded to six ligands 

(A, A*, B, B*, D & D*). The nine-coordinate Sm1* is symmetry equivalent to Sm1 and 

is bonded to five ligands (A*, B*, C*, D* & D). The final coordination site for Sm2 is 

occupied by an ethoxide ligand disordered over two positions (O6) related by the C2 

symmetry. 

Each of the four types of naphthalimide groups is involved in two types of π…π 

stacking interactions, one per face. The π…π stacking interactions between 1,8-

naphthalimide rings are defined by the following series of metrics: the angle between the 

planes of each ring and their average distance; the angle between the dipole vectors of 

each ring, which run through the central carbon atoms toward the nitrogen atoms; and the 

slippage parameter (χ), which gives the overlap of the two rings defined by the third side 

of the right triangle formed between the average perpendicular distance between the two 

rings and the line between the two central carbon atoms of each ring.  
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In 3, the order of stacking goes …C, A, D, B, C, A… The C…A stacking is 

between helicates along the crystallographic c axis forming a supramolecular helix with a 

pitch of 56 Å, Figure 4.2. Because there are two of types of each ligand per helicate, two 

supramolecular helices branch from each helicate (Figure 4.2, right) with each helix of 

the pair rejoining after the repeating unit of four helicate units along each chain, the pitch. 

The M helices are tightly wound and nestled together through additional π…π stacking 

interactions. The A…D, D…B and B…C stacking are between adjacent helicates lying in 

the crystallographic ab plane; these interactions create 2D sheets of helicates (Figure 4.3). 

In these sheets, each helicate interacts with four other helicates. When combined with the 

π…π stacking in the c-direction, the supramolecular structure is three dimensional. The 

metrics for these interactions are listed in Table 4.3. 

 There is a large amount of featureless interstitial electron density peaks observed 

in difference maps located in cavities between helicates (Figure 4.3); this mixture of the 

crystallization solvents water and ethanol could not be sensibly modeled and were 

removed by SQUEEZE.  
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Figure 4.1. Coordination environment for samarium(III) cations of 
[Sm3(L ser)8(OEt)]•(H2O, EtOH)x (3). 

       

Figure 4.2. (left) Side view of the supramolecular M helices of 3 formed by A…C 
stacking along the crystallographic c axis. Samarium cations are in pink and the circles 
highlight the A…C stacking. (right) Two M helices built from A…C stacking (orange and 
pink) branch from a single helicate (blue) and rejoin after the repeating unit of four 
helicates. 
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Figure 4.3. (left) Structure of 3 showing how adjacent helices are nestled and held 
together by A…D, D…B and B…C stacking to create a 2D sheet of helicates in the ab-
plane. (right) View down the crystallographic c-axis illustrating the cavities, which are 
filled with disordered solvent. 

The compounds 3-7 are isostructural, despite the changes in the sizes of the metals. The 

La and Ce compounds, 1 and 2, are slightly different in that the coordinated disordered 

ethoxide in 3-7, which occupies a single coordination site, is replaced by a water and a 

hydroxide anion, occupying two coordination sites and making the central Ln2 cation 

ten-coordinate. The extended structure and all π-stacking interactions remain the same 

with slight variations in the parameters due to differences in cation size (Table 4.3). 

Based on single crystal X-ray data for compounds 8-10, the mixed-metal compounds 

adopt solid state structures identical to those of 3 with a single disordered ethoxide ligand 

in the case of 9 and a hydroxide disordered over three positions in the cases of 8 and 10. 

The different metals are disordered evenly throughout the structure with a preference for 

the larger cation at the central position of the helicate, as indicated by the crystallographic 

Ueq values for Ln1 site compared to Ln2 from single crystal data. 

 

Magnetism. The magnetic susceptibility data for selected pure and mixed-metal 

compounds were measured with a SQUID magnetometer and the results shown in Table  
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Table 4.3. π…π Stacking Parameters 

Compound Type of Stacking Cen-Cen(Å) dipole ے (°) plane ے (°) avg dist (Å) χ (Å)
C - A 3.60 58.8 5.6 3.54 0.66
A - D 3.89 148.5 9.1 3.55 1.56
D - B 4.70 135.0 9.0 3.42 3.21
B - C 3.79 175.2 5.9 3.44 1.58
C - A 3.57 58.7 6.0 3.52 0.61
A - D 3.89 148.8 8.6 3.54 1.61
D - B 4.73 136.2 9.7 3.35 3.32
B - C 3.81 175.2 6.4 3.46 1.58
C - A 3.56 58.5 7.1 3.53 0.44
A - D 3.95 146.6 8.9 3.54 1.73
D - B 4.85 138.3 9.2 3.30 3.53
B - C 3.87 174.0 7.6 3.48 1.68
C - A 3.56 58.1 6.3 3.53 0.47
A - D 3.95 146.4 9.0 3.54 1.74
D - B 4.89 139.3 10.5 3.28 3.60
B - C 3.93 174.0 8.4 3.49 1.78
C - A 3.55 58.4 6.5 3.52 0.43
A - D 3.94 146.3 8.4 3.52 1.73
D - B 4.89 138.8 10.6 3.30 3.58
B - C 3.90 173.9 7.5 3.48 1.74
C - A 3.56 57.9 6.7 3.53 0.47
A - D 3.96 145.9 9.2 3.52 1.77
D - B 4.92 139.2 11.0 3.30 3.62
B - C 3.93 173.1 7.7 3.49 1.78
C - A 3.55 57.9 7.1 3.52 0.35
A - D 3.93 146.3 7.4 3.50 1.77
D - B 4.89 139.2 9.8 3.29 3.60
B - C 3.90 172.8 7.3 3.49 1.71
C - A 3.51 58.4 5.7 3.48 0.40
A - D 3.92 147.2 9.3 3.52 1.70
D - B 4.84 139.4 12.1 3.35 3.46
B - C 3.85 173.9 7.2 3.40 1.80
C - A 3.56 57.8 6.6 3.53 0.45
A - D 3.95 146.1 9.7 3.53 1.75
D - B 4.89 138.9 11.2 3.28 0.65
B - C 3.91 173.6 7.8 3.49 1.75
C - A 3.56 58.7 6.1 3.53 0.47
A - D 3.90 146.5 9.5 3.56 1.58
D - B 4.85 138.1 10.5 3.36 3.48
B - C 3.86 173.5 6.4 3.47 1.69

8 [Ce2.3Tb0.7(L ser)8(OH)]·(H2O, EtOH)x

9 [Gd0.4Tb2.6(L ser)8(OEt)]·(H2O, EtOH)x

10 [Ce1.4Gd0.3Tb1.3(L ser)8(OH)]·(H2O, EtOH)x

7 [Dy3(L ser)8(OEt)]·(H2O, EtOH)x

5 [Gd3(L ser)8(OEt)]·(H2O, EtOH)x

6 [Tb3(L ser)8(OEt)]·(H2O, EtOH)x

4 [Eu3(L ser)8(OEt)]·(H2O, EtOH)x

2 [Ce3(L ser)8(OH)(H2O)]·(H2O, EtOH)x

3 [Sm3(L ser)8(OEt)]·(H2O, EtOH)x

[La3(L ser)8(OH)(H2O)]·(H2O, EtOH)x1

 

4.4. The experimental susceptibilities obtained by zero-field cooling at 1000 Oe (Figure 

4.4, Table 4.4) were as expected for each of the metals in an isolated environment. Fitting 

the data to the Curie-Weiss law yields effective magnetic moments of 2.26, 7.62, 9.22, 

6.67, 8.16 and 6.90 µB, respectively, which are in good agreement with the expected 

values of 2.54, 7.94, 9.72, 6.89, 9.50 and 7.09 µB.22 There are no indications of 

interactions between the metals despite the extensive oxygen bridging groups in the 

structures. Compound 2 shows deviation from simple paramagnetic behavior in the form 
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of antiferromagnetic ordering below 50 K. For the mixed-metal lanthanides, the total 

susceptibilities are equal to that expected for the sum of each of the metals present, taking 

into account the make-up of the mixture, as determined via ICP-MS. Only 

[Gd0.4Tb2.6(L ser)8(OEt)]•(H2O, EtOH)x deviates somewhat, but in this measurement there 

was only a small amount of sample available, lowering the accuracy of the result.  

 

Figure 4.4. (a) Inverse susceptibilities, χm
-1, measured in an applied field of 1000 Oe. (b) 

Inverse susceptibility data for the Ce complex with a nonlinear deviation below 50 K. 
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Table 4.4. Magnetic moments (µexp) of all the compounds calculated from the inverse 
susceptibility, expected theoretical moment (µcalc, calculated for the mixed-metal 
complexes using the molar ratios based on the ICP-MS measurements), and paramagnetic 
Curie-Weiss temperature, θ (K). 

Compound µexp(µB/F.U.) µcalc(µB/F.U.) θ (K) 

[Ce3(L ser)8(OH)(H2O)]•(H2O, EtOH)x 2.26 2.54 -17.7 

[Gd3(L ser)8(OEt)]•(H2O, EtOH)x 7.62 7.94 0.0 

[Tb3(L ser)8(OEt)]•(H2O, EtOH)x 9.22 9.72 -2.1 

[Ce1.6Tb1.4(L ser)8(OH)]•(H2O, EtOH)x 6.67 6.89 -2.6 

[Gd0.4Tb2.6(L ser)8(OEt)]•(H2O, EtOH)x 8.16 9.50 -1.3 

[Ce1.4Gd0.3Tb1.3(L ser)8(OH)]•(H2O, EtOH)x 6.90 7.09 -1.0 

 

Luminescence. With one exception, all of the compounds exhibit solid-state 

luminescence dominated by the naphthalimide chromophore in the ligand. For all cases, a 

blue-green emission is observed where the maximum is red-shifted with respect to the 

ligand which is typical for ligand to metal charge transfer (LMCT). Surprisingly, these 

results are different from all of the group 1 and 2 complexes prepared with the L ser
- 

ligand, where the maxima are blue-shifted with respect to the ligand. The emission 

spectra for all of the pure metal compounds (1-7) are identical ([Gd3(L ser)8(OEt)]•(H2O, 

EtOH)x shown in Figure 4.5) with the exception of the cerium(III) and europium(III) 

compounds (2 and 4).  Compound 4 has an additional peak at ~615 nm originating from a 

sensitized europium(III) emission as seen in Figure 4.8.  

The cerium(III) compound 2 has no solid state emission. To investigate the 

impact of cerium(III) doping on the naphthalimide emission of the other complexes, a 

series of mixed-metal compounds with varying ratios of cerium(III) and terbium(III) 
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were synthesized and fully characterized.  Figure 4.6 shows how the characteristic solid-

state naphthalimide emission spectra is quenched upon doping with cerium(III).  To 

quantitate these observations, absolute quantum yields in the solid-state of these mixed-

metal and the pure metal complexes were measured on an Edinburgh SpectroFluorometer 

FS5 (Table 4.5). The pure Tb compound has the greatest quantum yield of 13.3 ± 1.0%, 

while the Ce compound excited at the same wavelength (300 nm) has a quantum yield of 

0.2 ± 0.2 %. All of the compounds containing a mixture of these two metals have a 

quantum yield of less than 1.7 % except for one which has 90% Tb and a quantum yield 

of 4.5 ± 0.2 %.  

 

Figure 4.5. Emission spectrum for [Gd3(L ser)8(OEt)]•(H2O, EtOH)x (5, red) and 
[Eu3(L ser)8(OEt)]•(H2O, EtOH)x (4, black). 
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Figure 4.6. Emission spectra for [Tb3(L ser)8(OEt)]•(H2O, EtOH)x (blue) and 
[Ce0.7Tb2.3(L ser)8(OH)]•(H2O, EtOH)x (green),  The inset is the emission of crystals of 
[Tb3(L ser)8(OEt)]•(H2O, EtOH)x on top and [Ce0.7Tb2.3(L ser)8(OH)]•(H2O, EtOH)x on the 
bottom. 

Table 4.5. Absolute Quantum Yield Data. 

Metal Ratios QY (%) 

Tb3 13.3 ± 1.02 

Ce0.3Tb2.7 4.5 ± 0.21 

Ce0.7Tb2.3 1.7 ± 0.18 

Ce1.6Tb1.4 1.6 ± 0.18 

Ce1.9Tb1.1 0.9 ± 0.10 

Ce2.4Tb0.6 0.3 ± 0.11 

Ce3 0.2 ± 0.29 
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Discussion 

We have prepared a series of compounds from several lanthanide(III) metals (La, 

Ce, Sm, Eu, Gd, Tb, Dy) and the L ser
- ligand (Scheme 4.1). Complexes containing two or 

more metals were also prepared. In our previous work with group 1 and 2 compounds, 

1D homochiral helical rod-shaped SBUs dominated the covalently bonded part of the 

structures, but with the lanthanide metals discrete homochiral helicate SBUs are formed. 

All of the complexes with group 1 and 2 metals had at least one dimension of the 

structure held together by covalent interactions, whereas the lanthanide(III) solid state 

extended structures are held together solely by π…π stacking. All of the lanthanides 

studied form a single structural type: trinuclear helicates held together by the L ser
- 

ligands, which interact with adjacent helicates through π-stacking interactions. In this 

case, the helicates are organized along the c-axis into homochiral helices with an average 

pitch of 56 Å, exclusively by π…
π stacking interactions.  We have observed a similar 

structural arrangement once previously in [Zn(L*ala)2(bipyridine)(H2O)2]•4.74H2O,4 

although the structures are more complex with the lanthanide complexes. These 

lanthanide structures are very unusual because each helicate is part of two helices 

creating multiple pairs of intertwined helices. 

The chirality from the ligands is expressed through the supramolecular 

arrangement of helicates into homochiral M helices. It is interesting that despite the 

oxophilic nature of lanthanide(III) metals, not all of the alcohol moieties present in the 

ligands are bonded to the metals. The complexes with lanthanides are the first cases 

where there is deprotonated solvent as part of the SBU with the class of ligands shown in 

Scheme 4.1: OH- in 1, 2, 8 and 10, and EtO- for the rest of the complexes. We attribute 
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these latter two results to the bulkiness of the ligands coupled with the higher charge of 

the metals that increases the ligand/metal ratio. All of the structures have cavities 

occupied by disordered solvent molecules. 

Very recently, lanthanides complexes of our achiral LC1
-  and LC2

- ligands 

(Scheme 4.1), [Ln(LC1)3(CH3OH)(H2O)]n and [Ln(LC2)3(H2O)]n•H2Ox (Ln = Eu & Gd), 

have been prepared and structurally characterized by Yan et al.13  The structures of these 

complexes are built on rod-shaped SBUs similar to our compounds with group 1 and 2 

metals,8,9 but very different from compounds 1-10. The presence of the alcohol moiety in 

the ligand side-chain, an additional potential donor group, leads to discrete trinuclear 

helicate SBUs in the compounds reported here.   

ICP-MS, single crystal XRD and EDS confirm that the mixed-metal crystals 

contain a disordered mixture of the metals across all positions in the same structure type 

as the pure metal complexes. Although a breadth of Ln3+ ratios for the mixed-metal 

complexes were observed, there appears to be a preference for some metals over others in 

the crystallization process. No mixed-metal complexes were synthesized for 

dysprosium(III) despite attempted syntheses containing dysprosium and other lanthanides 

(Ce, Tb, & Eu), possibly due to crystallization problems (only crystalline products were 

analyzed in these studies). In the three examples of mixed metal gadolinium(III) 

compounds, the percentage of that metal in the resulting products is much lower than in 

the reactants used. Thus, Gd was found to be more difficult to incorporate into the 

structure despite other cations of similar size and charge easily forming mixed 

complexes. Ce and Tb readily formed mixed metal species, with a slight preference for 

Tb. The other metals preferences are about equal. For all of the mixed-metal species there 
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is a slight preference for the larger of the cations to be located at the central M2 site of 

the trinuclear helicate. 

The flexible nature of the π-stacking interactions likely contributes to the wide 

range of metals that can be incorporated into the same structure type for 1-7 and the 

mixed-metal complexes 8-10. Several trends can be observed across the trinuclear 

lanthanide complexes. As the size of the cation changes, from 1.03 Å in the case of La3+ 

to 0.91 Å in the case of Dy3+, the pi stacking parameters change, most notably the 

slippage parameter and the dipole angle. The two types of stacking are along the 

crystallographic c axis (C – A stacking) and across the ab-plane (A – D, D – B and B – 

C). The slippage parameters of the C ligand (Table 4.3) are the most affected by change 

in cation size while the rest of the parameters remain relatively unchanged. The slippage 

parameters of the C ligand change from 0.35 Å and 1.71 Å in the case of the smallest 

cation, Dy3+, to 0.66 Å and 1.58 Å in the case of the largest cation, La3+. The C ligand is 

likely more flexible because it serves only as a capping ligand to the helicates, the 

carboxylate is κ1, κ1 chelating to a single lanthanum(III) cation. The movement of the 

other ligands is more restricted because they bridge two or three metals. 

Magnetic measurements of several compounds were collected and found to 

display the expected paramagnetic properties. No significant interactions between metals 

within the helicates or between helicates were observed. The magnetic susceptibilities 

very closely match those predicted based on the metals used for the homo-metallic 

compounds. For the hetero-metallic compounds, the total magnetic susceptibility is equal 

to the sum of each individual metal’s susceptibilities and these metal ratios match those 

from the ICP-MS. The only deviation from normal Curie paramagnetic behavior is 
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observed in the Ce compound 2, where, below 50 K, there is antiferromagnetic ordering 

most likely arising from intramolecular magnetic coupling. 

Previous complexes with group 1 and 2 metals yielded solids that exhibited 

luminescence most closely resembling that of the protonated naphthalimide ligand. 

Complexes with L ser
- were consistently blue shifted with respect to the ligand whereas 

the complexes with L ala
- were red shifted; red shifting is typical for ligand to metal 

charge transfer (LMCT). The L ser
- complexes with lanthanide metals are also red shifted. 

Despite the 1,8-naphthalimide group being a good sensitizer for white light emission in 

some cases,13,15 the lanthanide luminescence was completely overwhelmed by the organic 

luminescence in our complexes. The europium(III) complex is an outlier with a sensitized 

europium emission peak, resolved at 613 nm, which was far enough away from the blue-

green emission of the ligand to be observed.  

The Ce complex 2 is non-emissive and heterometallic complexes containing 

cerium(III) were found to have a much lower quantum yield than others without it. In 

order to study the effect of cerium(III) on naphthalimide emission, a series of complexes 

with different concentrations of Ce/Tb were prepared and the resulting ratios determined 

from ICP-MS. The absolute quantum yield (solid state) for the pure terbium(III) complex 

is 13.3 ± 1.0 %, but once 10% cerium(III) was incorporated the quantum yield dropped to 

4.5 ± 0.2 %. As more cerium(III) is doped into the complex and the statistical likelihood 

of there being at least one cerium(III) cation per helicate increases, the quantum yield 

drops significantly until reaching 0.2 ± 0.2 %. The fluorescence quenching mechanism is 

most likely due to a charge transfer relaxation similar to those observed with transition 

metals.23,24  
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Chapter V 

Supramolecular Metal-Organic Frameworks of s- and f-Block Metals: Impact of 1,8-

Naphthalimide Functional Group 
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Introduction 

Metal-Organic Frameworks (MOFs), highly organized networks of organic 

ligands coordinated to metal secondary building units (SBUs) to create multidimensional 

structures, provide an excellent system for examining the coordination environments of 

the “hard” group 2 and “inner” transition metals interacting with bulky polytopic 

ligands.1–7 The organic bridging ligands can be ornamented with functional groups that 

impart new properties on the materials.8–10 The bulky 1,8-naphthalimide functional group 

is both an excellent chromophore and flexible supramolecular tecton.3,4,11–14 MOFs 

prepared from ligands containing this group (Scheme 5.1) provide an excellent strategy to 

arrange organic photosensitizers in proximity to metal cations in an effort to create 

sensitized luminescent materials.5–7,15,16 

 

Scheme 5.1. Multifunctional Ligands 

We have previously synthesized a series of ligands (for example,  L ala
-, Lser

-  and 

LC4
-  in Scheme 1) derived from amino acids containing the 1,8-naphthalimide 

supramolecular tecton and several points of connectivity including a single 



www.manaraa.com

 

116 
 

carboxylate.3,11,15,17,18 When combined with group 1, 2 and transition metals, a variety of 

structural types were formed ranging from completely covalent three-dimensional (3D) 

structures11 to those that are partially3 or completely15 organized by π...π stacking  

supramolecular interactions. We have referred to structures organized in one or more 

dimension by noncovalent forces as Supramolecular Metal-Organic Frameworks 

(SMOFs).12–14,19,20 When the ligand L ser
- is combined with group 1 and 2 metals, 1D 

helical rods of corner, edge, and/or face-shared cations are formed where the 

naphthalimide supramolecular synthon organizes the rods into SMOFs.3,11,18 In one case, 

[Cs(L ser)], the ligand excludes coordinating solvent (ethanol and water) from the 

oxophilic cesium cations. This exclusion of solvent is of particular interest because 

solvent molecules coordinated to lanthanide cations can quench fluorescence.21,22 For a 

series of complexes with the formula [Ln3(OR)(L ser)8]•(H2O, EtOH)x (Ln = Sm, Eu, Gd, 

Tb and Dy), a single structure type was formed and mixed metals complexes could be 

prepared with some degree of control of the mixture. The luminescence properties of 

these compounds were studied and in most cases the naphthalimide emission completely 

dominated the spectrum, but in the case of Eu3+ some sensitization occurs. Interestingly, 

the Ce3+ complex quenches luminescence, so a quantum yield study on mixed metal 

species was conducted that elucidated a charge transfer mechanism between Ce3+ and the 

naphthalimide ring.15 

Actinide usage in MOF materials has been seldom studied due to the diverse 

topologies and coordination environments.23–29 The coordination environments of actinide 

metals are of particular interest because of the applications in designing extracting agents 

and novel fuel precursors.30 The uranyl cation (UO2
2+) is an excellent fluorophore with 
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well resolved emission peaks and has a consistent linear O=U=O moiety, but is rare as an 

SBU in MOF materials.30,31 The thorium cation (Th4+) is even more rare than uranyl in 

the study of MOF architectures and the comparison of the different coordination 

environments can help with separations studies.23,26,29 

Reported here are the syntheses and the solid state crystal structures of a series of 

complexes of a new ligand, containing the naphthalimide group and two carboxylate 

groups (L 135
2-), with a series of oxophilic metals (Ca2+, Ba2+, La3+, Ce3+, Eu3+, Tb3+ 

UO2
2+ and Th4+). Structural similarities and differences arise among the different metals. 

All of the compounds have at least one dimension organized by the 1,8-naphthalimide 

supramolecular synthon. The fluorescence spectra for all compounds were studied and 

compared to those of the protonated ligand, H2L 135. No fluorescence was observed for 

Ce2(L 135)3(DMF)4 and [UO2(L 135)(DMF)]·(py)0.5(EtOH)0.5, despite the presence of 

multiple fluorophores.  

Experimental 

General Considerations 

All reactants were used as purchased from Aldrich and Strem. Elemental analyses were 

performed by Robertson Microlit Laboratories (Ledgewood, NJ) on samples dried to 

constant weight. 1H NMR spectra were recorded on a Bruker 300 MHz spectrometer. The 

fluorescence measurements were carried out on an Edinburgh Spectrofluorometer FS5. 

The emission spectra were measured with a 400 nm excitation wavelength in all cases 

except for compound 6, Tb2(L 135)3(DMF)4, which used a 507 nm wavelength. Caution: 

Uranyl nitrate hexahydrate and thorium nitrate hydrate are radioactive materials. All 
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standard precautions for handling radioactive and highly toxic substances should be 

followed. 

 

Synthesis of H2L135  

1,8-Naphthalic anhydride (1.98 g, 10.0 mmol) and 3-aminoisophthalic acid (2.18 g, 12.0 

mmol) were stirred in dimethylformamide (120 mL) and heated under reflux conditions 

overnight. The hot reaction mixture was added to ice and the resulting precipitate gravity 

filtered and dried in vacuo. The cream colored solid was added to a solution of methanol 

(100 mL) containing triethylamine (1.50 g, 14.8 mmol) and stirred for 1 hour. Impurities 

were separated via gravity filtration and the remaining homogeneous brown solution 

acidified with 3 M HCl and let rest overnight. The precipitate was collected and washed 

with methylene chloride (2 x 50 mL) to provide a white solid that was dried in vacuo to 

yield 2.84 g (7.86 mmol, 79 % yield) of product. HRMS: ES+ (m/z): Calcd. for 

[C20H12NO6]
+ 362.0665; found 362.0662. 1H NMR (DMSO-d6, 300 MHz) δ 7.92 (t, 2H, 

napht), 8.25 (d, 2H, phen), 8.508 (s, 1H, phen), 8.53 (d, 2H, napht), 8.56 (t, 2H, napht), 

9.90 (s, 2H, -COOH). Anal. Calcd. (Found) for C20H11NO6: C 66.49 (66.05); H 3.07 

(3.58); N 3.88 (4.15). 

 

Synthesis of [Ca4(L135)4(H2O)8]·(H2O)9.5(DMF)2.6 (1) 

H2L 135 (0.520 g, 1.44 mmol) was added to a solution of calcium hydroxide (0.120 g, 1.60 

mmol) in a 1:1 mixture of water and methanol (100 mL) and heated under refluxing 

conditions for 1 hour. The heat was removed and the yellow solid was collected and 

washed with water and dried in vacuo to collect 0.487 g of product. A 9 mL thick walled 
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glass tube with a Teflon screw top was charged with a sample of this solid (0.050 g), 

dimethylformamide (1.5 mL) and water (1.5 mL) and heated in an oil bath at 120 °C. 

Over the course of 1 day colorless block crystals grew on the walls of the reaction vessel 

above the solvent line. The heat was removed and the crystals were collected from the 

tube and dried over filter paper to provide 0.043 g of 1 in a 55% yield. Anal. Calcd. 

(Found) for C86H54Ca4N6O28: C 58.04 (57.55); H 3.06 (2.88); N 4.72 (5.39).  

 

Synthesis of Ba(L135)(H2O)1.5(DMF)0.5 (2)  

Compound 2 was synthesized in a similar manner to compound 1 but with barium 

hydroxide (0.240 g, 1.40 mmol) and no water to give a white precipitate (0.320 g). The 

solid was heated under solvothermal conditions similar to compound 1 to yield colorless 

plate crystals (0.040 g) in a 33% yield. Anal. Calcd. (Found) for C21.5H15.5BaN1.5O8: C 

46.10 (46.23); H 2.79 (2.75); N 3.75 (3.57). 

 

Synthesis of La2(L135)3(DMF)4 (3) 

A 9 mL thick walled glass tube with a Teflon screw top was charged with lanthanum 

nitrate (0.090 g, 0.28 mmol), H2L 135 (0.037 g, 0.10 mmol),  dimethylformamide (1.5 mL) 

and ethanol (0.5 mL) and heated in an oil bath at 100 °C. Colorless plate crystals grew 

overnight on the walls of the reaction vessel below the solvent line. The heat was 

removed and the crystals were collected from the tube, washed with methanol and dried 

over filter paper to provide 0.054 g of single crystals of 3 in a quantitative yield. Anal. 

Calcd. (Found) for C72H55La2N7O22: C 52.47 (52.36); H 3.36 (3.35); N 5.95 (6.17). 

 



www.manaraa.com

 

120 
 

Synthesis of Ce2(L135)3(DMF)4  (4) 

Compound 4 was synthesized in a similar manner to compound 3 but with cerium(III) 

nitrate (0.096 g, 0.22 mmol). The resulting irregular yellow crystals were collected and 

washed with methanol to yield 0.040 g of 4 in a quantitative yield. Anal. Calcd. (Found) 

for C72H55Ce2N7O22: C 52.40 (51.84); H 3.36 (3.05); N 5.94 (5.92). 

 

Synthesis of Eu2(L135)3(DMF)4  (5) 

Compound 5 was synthesized in a similar manner to compound 3 but with europium(III) 

nitrate (0.040 g, 0.093 mmol). The resulting colorless plate-like crystals were collected 

and washed with methanol to yield 0.040 g of 5 in a quantitative  yield. Anal. Calcd. 

(Found) for C72H55Eu2N7O22: C 51.66 (51.58); H 3.31 (3.11); N 5.86 (5.66). 

 

Synthesis of Tb2(L135)3(DMF)4  (6) 

Compound 6 was synthesized in a similar manner to compound 3 but with terbium(III) 

nitrate (0.040 g, 0.092 mmol). The resulting colorless plate-like crystals were collected 

and washed with methanol to yield 0.034 g of 6 in a quantitative yield. Anal. Calcd. 

(Found) for C72H55Tb2N7O22: C 51.23 (51.08); H 3.28 (3.17); N 5.81 (5.76). 

 

Synthesis of [UO2(L135)(DMF)]·(py)0.5(EtOH)0.5  (7) 

A 9 mL thick walled glass tube with a Teflon screw top was charged with uranyl nitrate 

(0.010 g, 0.025 mmol), H2L135 (0.010 g, 0.028 mmol),  dimethylformamide (1.5 mL), 

ethanol (0.5 mL) and pyridine (0.1 mL, 1.24 mmol) and heated in an oil bath at 120 °C. 

Over the course of 3 days yellow prism crystals grew on the walls of the reaction vessel 
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below the solvent line. The heat was removed and the crystals were collected from the 

tube, washed with methanol and dried over filter paper to provide 0.011 g of 7 in a 57% 

yield.  

 

Synthesis of [Th(L135)(NO3)2(DMF)2]·(DMF)2  (8) 

A 9 mL thick walled glass tube with a Teflon screw top was charged with thorium nitrate 

(0.015 g, 0.031 mmol), H2L135 (0.020 g, 0.056 mmol), dimethylformamide (2 mL) and 

heated in an oil bath at 120 °C. Over the course of 3 days colorless plate crystals grew on 

the walls of the reaction vessel above the solvent line. The heat was removed and the 

crystals were collected from the tube, washed with methanol and dried over filter paper to 

provide 0.004 g of 8 in a 15% yield.  

 

Table 5.1. Crystallography Data  

  1 2 3 4 

Formula C87.74H89.1Ca4N6.58O44.1  C21.5H15.5BaN1.5O8  C72H55La2N7O22  C72H55Ce2N7O22 

Fw, g mol-1 2101.75 560.19 1648.05 1650.47 
Cryst. Syst. triclinic triclinic orthorhombic orthorhombic 

Space group P-1 P-1 Pbcn Pbcn 

T, K 100(2) 100(2) 100(2) 100(2) 

a, Å 13.7978(8) 8.5215(16) 10.2418(8) 10.2277(10) 

b, Å 18.3385(11) 8.6517(17) 34.742(3) 34.658(3) 

c, Å 18.3572(11) 14.105(3) 19.1634(15) 19.1299(19) 

α, deg 101.000(2) 97.693(4) 90 90 

β, deg 91.968(2) 102.534(4) 90 90 

γ, deg 92.246(2) 104.882(4) 90 90 

V, Å3 4552.0(5) 961.0(3) 6818.7(9) 6780.9(12) 

Z 2 2 4 4 

R1(I>2σ (I))a 0.0523 0.0376 0.0596 0.0623 

wR2(I>2σ (I))b 0.1310 0.0740 0.1557 0.1648 
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  5 6 7 8 

Formula C72H55Eu2N7O22 C72H55Tb2N7O22 C26.58H21.47N2.53O9.47U  C26H23N5O14Th 

Fw, g mol-1 1674.15 1688.07 765.93 861.53 
Cryst. Syst. orthorhombic Orthorhombic monoclinic triclinic 

Space group Pbcn Pbcn I2/a P-1 

T, K 100(2) 100(2) 100(2) 100(2) 

a, Å 10.1619(5) 10.1594(7) 21.498(4) 9.0236(14) 

b, Å 34.4601(16) 34.418(2) 16.531(4) 10.8046(17) 

c, Å 19.0757(9) 18.9947(14) 16.688(3) 18.003(3) 

α, deg 90 90 90 86.508(3) 

β, deg 90 90 92.398(4) 87.408(3) 

γ, deg 90 90 90 82.982(4) 

V, Å3 6679.9(6) 6641.9(8) 5925(2) 1737.6(5) 

Z 4 4 8 2 

R1(I>2σ (I))a 0.0567 0.0582 0.0501 0.0420 

wR2(I>2σ (I))b 0.1371 0.1384 0.1429 0.0872 
  

a R1 = Σ ||Fo| - |Fc|| / Σ|Fo| 
b wR2 = { Σ [ w(Fo

2-Fc
2)2 ] / Σ [ w(Fo

2)2 ] } 1/2 

 

 

Results and discussion 

Synthesis. Naphthalic anhydride and 5-amino isophthalic acid were heated in 

DMF under reflux conditions to form the protonated ligand H2L 135. This compound when 

combined with Ca(OH)2 and Ba(OH)2 and heated under reflux conditions in 1:1, 

MeOH:H2O or a pure MeOH solution precipitated salts of the ligand CaL 135 and BaL 135, 

respectively. After loading into high-pressure tubes partially submerged in an oil bath and 

heating under solvothermal conditions (DMF/water), single crystals of compounds 

[Ca4(L135)4(H2O)8]·(H2O)9.5(DMF)2.6 (1) and Ba(L 135)(H2O)1.5(DMF)0.5 (2) grew on the 

walls of the tubes. Heating mixtures of H2L 135 in DMF/ethanol with La(NO3)3•6H2O, 

Ce(NO3)3•6H2O, Eu(NO3)3•5H2O or Tb(NO3)3•6H2O produced single crystals of 

La2(L 135)3(DMF)4 (3), Ce2(L 135)3(DMF)4 (4), Eu2(L 135)3(DMF)4 (5) and 



www.manaraa.com

 

123 
 

Tb2(L 135)3(DMF)4 (6),  respectively, which grew on the walls of the solvothermal tubes 

below the solvent line. The reaction of uranyl nitrate with the protonated ligand H2L 135 

under solvothermal conditions in a DMF/EtOH/pyridine solution yielded 

[UO2(L135)(DMF)]·(py)0.5(EtOH)0.5 (7), which crystallized on the walls of the reaction 

vessel underneath the solvent line. Crystals of Th(L 135)(NO3)2(DMF)2]·(DMF)2 (8) grew 

from the solvothermal reaction of thorium nitrate and H2L 135 in DMF. 

Solid State structure of [Ca4(L 135)4(H2O)8]·(H2O)9.5(DMF)2.6 (1).  The irregular 

coordination environments for the calcium cations of compound 1 are shown in Figure 

5.1. There are four unique ligands (A-D) and four unique calcium cations (Ca1-Ca4) per 

formula unit. The calcium cations are bridged into helical rods of edge-shared polyhedra 

through the carboxylates of the L 135
2- ligand (Figure 5.2). For each P-helical rod there is 

an adjacent M-helix generating a racemic mixture. All of the carboxylates are involved in 

µ-κ1
κ

2 bonding, with each ligand coordinating to four different metals along the same rod. 

Each of the calcium cations has an 8-coordinate geometry with 6 sites occupied by 

bridging carboxylates and the remaining two sites with water. The calcium cations differ 

in the disorder of the coordinated waters and the interactions with adjacent interstitial 

solvents. The two coordinated water molecules for Ca1 (O7 & O8) are ordered and the 

hydrogen atoms of the water molecules are modeled. The water O7 is a hydrogen bond 

donor to an interstitial water molecule and an interstitial DMF molecule. The water O8 is 

a hydrogen bond donor to a well ordered interstitial water molecule, which is locked in 

place by being a hydrogen bond donor to a carboxylate from ligand D and a carbonyl 

from ligand C coming from an adjacent rod. The two coordinated water molecules for 

Ca2 (O9 & O10) are both disordered over two positions and hydrogen atoms were not 
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modeled. The water O9 acts as a hydrogen bond acceptor with an interstitial DMF 

molecule. Of the two coordinated waters for Ca3, O11 is disordered over two positions 

and O12 is ordered and acts as a hydrogen bond donor to two different interstitial water 

molecules, one which is disordered and another that is locked in place by hydrogen bond 

interactions with a carboxylate from ligand B and a carbonyl from ligand A from an 

adjacent rod. Both of the coordinated waters (O13 & O14) for Ca4 are ordered and act as 

hydrogen bond donors for interstitial water molecules.  

The four different naphthalimide rings of each rod are oriented in four directions 

perpendicular to the rod creating four nodes for supramolecular interactions with adjacent 

rods to build, along with the hydrogen bonding interactions, a 3D SMOF structure 

(Figure 5.3). The angles between each of the nodes from a given rod are as follows: ∠AD 

= 109º, ∠BC = 35º and ∠AB = ∠CD = 108º (Figure 2). Each of these nodes consists of an 

infinite stacking of naphthalimide rings contributed from four adjacent rods, two of 

which are P-helices and two of which are M-helices. The sequence of π…π stacking 

interactions is identical within each of the nodes, following the pattern 

…D…A…B…C…D…A…
. The parameters for each interaction in compound 1 are listed in 

Table 5.2. This three dimensional arrangement leaves four types of channels filled with 

solvent. Three of the channels are filled with slightly disordered interstitial solvent, an 

approximate 5:1 mixture of H2O:DMF, and two water molecules coordinated to calcium 

cations. The second type of channel is filled with well ordered water hydrogen bonded to 

different coordinated ligands. 
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Figure 5.1. Coordination environment for the four unique calcium cations of 
[Ca4(L135)4(H2O)8]·(H2O)9.5(DMF)2.6  (1) 
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Figure 5.2. Two views of one-dimensional rods of compound 1. 

 

Figure 5.3. Three-dimensional structure of compound 1 where P-helices are red, M-
helices are blue and uncoordinated interstitial solvent is green. 
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Solid State structure of Ba(L135)(H2O)1.5(DMF)0.5 (2). The solid state structure 

of 2 consists of rod-shaped SBUs of edge-sharing 9-coordinate Ba2+ cations bridged by 

L 135
2- ligands into two dimensional sheets. Each barium cation is coordinated by 5 

ligands, a water molecule and one site occupied by disordered water or 

dimethylformamide in a 50:50 ratio (Figure 5.4). The µ-κ1κ2 carboxylates bridge the 

cations into rod-shaped SBUs while the ligand connects adjacent rods on either side 

(Figure 5.5). The naphthalimide rings chelate the rods through the O2 carbonyl to a 

different Ba2+ cation along the chain. The naphthalimide rings on either side of the 2D 

sheets are able to engage in π…π stacking interactions with adjacent sheets to build a 

three-dimensional SMOF structure (Figure 5.6). The π…π stacking interactions for 

compound 2 are listed in Table 5.2. The coordinated DMF and water solvents are located 

between supramolecular synthons so that the sequence is …-ring-ring-solvent-ring-ring-

solvent-…. 

 

Figure 5.4. Coordination environment of Ba2+ and L 135
2- in Ba(L 135)(H2O)1.5(DMF)0.5 (2) 
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Figure 5.5. Views along edges of a sheet of compound 2 showing how ligand 
carboxylates bridge edge-shared barium polyhedra into 1D rod-shaped SBUs (left) and 
how rods are bridged into sheets with naphthalimide rings on either side (right).  

 

Figure 5.6. Views along [1 -1 0] (A) and [1 1 0] (B) axis, showing the naphthalimide 
overlap between sheets of compound 2. Adjacent sheets are colored differently. 

Solid State structure of La2(L135)3(DMF)4 (3).  The solid state structure of 3 

consists of dinuclear units of edge-sharing 9-coordinate La3+ cations that make up the 

SBU (Figure 5.7). The SBUs are connected in two dimensions by six bridging L 135
2- 

ligands to generate sheets in a square-shaped grid pattern, where the SBUs make up the 

nodes (Figure 5.8). Four of the ligands “di-bridge” SBUs along the crystallographic a-
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axis while the other two ligands bridge SBUs along the crystallographic c-axis. This SBU 

is similar to others reported for lanthanide organic frameworks21,32,33 and bares 

similarities to the paddlewheel SBU frequently observed with transition metals with four 

points of extension at 90° angles from one another.19  

The 2D covalent sheets are engaged in π interactions with adjacent sheets on 

either side to generate a 3D SMOF (Figure 5.9).  There are two types of π interactions 

that the naphthalimide is involved in: π …π interactions between naphthalimide rings of 

adjacent sheets and C-H…π interactions between rings within the same sheet (Figure 

5.10). The π…π stacking interactions for compound 3 are listed in Table 5.2. 

 

Figure 5.7. Secondary building unit (SBU) of compound La2(L135)3(DMF)4 (3) consists 
of two edge shared La(III) cations. 
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Figure 5.8. Covalent sheets (naphthalimide rings excluded) of compound 3 with di-
bridging carboxylates along the a-axis (black) and singly-bridging carboxylates along the 
c-axis (red). 

 

Figure 5.9. View showing interdigitation between covalent sheets of compound 3. 
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Figure 5.10. Orientation of naphthalimide rings between covalent sheets of compound 3 
where rings from different sheets are different colors. There are C-H…π interactions 
within a sheet and π…π interactions between adjacent sheets. 

The solid state structures of La2(L 135)3(DMF)4 (3), Ce2(L 135)3(DMF)4 (4), 

Eu2(L 135)3(DMF)4 (5) and Tb2(L 135)3(DMF)4 (6) are isostructural despite changes in the 

sizes of the metals. The extended structure and all π-stacking interactions remain the 

same with slight variations in the parameters due to differences in cation size (Table 5.2). 

 

Solid State structure of [UO2(L 135)(DMF)]·(py)0.5(EtOH)0.5 (7).  The solid state 

structure of 7 consists of 7-coordinate pentagonal bipyramid uranyl cations bridged by 

L 135
2- ligands into one dimensional ribbons. The coordination environment is typical for 

that of the uranyl cation (Figure 5.11) with the two axial sites occupied by oxide groups 

oriented at a 179° angle. Four of the five equatorial sites are occupied by carboxylates 

from three different ligands while the fifth is a dimethylformamide solvent molecule. For 

each ligand that bridges three uranyl cations, one of the carboxylates forms a κ2 bond 

with one uranyl while the other forms a µ-κ1κ1 between two uranyl cations. Uranyl 

cations are dibridged by L 135
2- ligands to form a 1D ribbon (Figure 5.12). The 

naphthalimide rings end up on either side of the ribbon and interact with adjacent ribbons 
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to create a supramolecular 2D sheet (Figure 5.13). There are no interactions between the 

sheets of ribbons to generate a 3D SMOF structure (Figure 5.14).  

There are uncoordinated solvent molecules, pyridine and ethanol, that occupy the 

space between pi stacking interactions so that the sequence is …-ring-ring-solvent-ring-

ring-solvent-…. The pyridine molecule is engaged in pi stacking interactions on the 

outside of the naphthalimide ring sandwiches. The π…π stacking interactions for 

compound 7 are listed in Table 5.2. 

 

Figure 5.11. Building unit of a ribbon of [UO2(L 135)(DMF)]·(py)0.5(EtOH)0.5 (7) 

 

Figure 5.12. Ribbon of 7 extending along the crystallographic a-axis.  
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Figure 5.13. The π…π stacking between ribbons of 7 generating supramolecular 2D 
sheets along the ac plane 

 

Figure 5.14. Four ribbons of 7 viewed down the a-axis with supramolecular sheets 
extending left and right and no interactions between ribbons above and below. 

 

Solid State structure of [Th(L135)(NO3)2(DMF)2]·(DMF)2  (8). The solid state 

structure of 8, [Th(L 135)(NO3)2(DMF)2]·(DMF)2, consists of 10-coordinate thorium 

cations bridged by L 135
2- ligands in one dimensional ribbons. Of the ten coordination 

sites, four are occupied by oxygens from the carboxylates of L 135
2- originating from three 

distinct ligands, two are occupied by DMF solvent molecules (one of which is disordered 

over two positions) and the remaining four are occupied by two nitrate ligands chelating 
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through two oxygen atoms (Figure 5.15). The ligands coordinate to the thorium in a 

manner similar to that observed with the uranyl compound 7, where one of the 

carboxylates forms a κ2 bond with one thorium while the other forms a µ-κ1κ1 between 

two thorium cations. Figure 5.16 shows two side by side 1D ribbons where the ligands 

act to di-bridge thorium cations. There are π…π stacking interactions (parameters listed in 

Table 5.2) between adjacent ribbons generating supramolecular 2D sheets along the bc 

plane. There are solvent-filled channels between the naphthalimide stacks that are 

occupied by disordered DMF molecules. As seen in Figure 5.17, there are no interactions 

between sheets making this a 2D SMOF structure. 

 

Figure 5.15. Building unit of a ribbon of [Th(L 135)(NO3)2(DMF)2]·(DMF)2, (8). 
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Figure 5.16. The π…π stacking of 8 between ribbons generating supramolecular 2D 
sheets along the bc plane. 

 

 

Figure 5.17. Four ribbons of 8 viewed down the b-axis with supramolecular sheets 
extending left and right and no interactions between ribbons above and below. 
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Table 5.2 Pi stacking parameters 

  Compound Type of 
Stacking 

Cen-
Cen 
(Å)a 

dipole 
 b(°) ے

plane 
 c(°) ے

avg 
dist 
(Å)d 

χ 
(Å)e 

1 [Ca4(L135)4(H2O)8]•(H2O)9.5(DMF)2.6 

D-A 3.58 70.5 7.5 3.54 0.51 

A-B 3.54 69.9 7.4 3.50 0.52 

B-C 3.67 144.8 10.1 3.44 1.27 

C-D 3.59 70.1 1.4 3.38 1.22 
2 Ba(L135)(H2O)1.5(DMF)0.5   3.71 180.0 0.0 3.38 1.53 

3 La2(L135)3(DMF)4 
  4.99 179.1 5.2 3.47 3.57 

  3.79 167.3 3.4 3.24 1.97 

4 Ce2(L135)3(DMF)5 
  5.00 179.0 5.8 3.48 3.57 

  3.81 167.7 4.2 3.24 2.00 

5 Eu2(L135)3(DMF)6 
  4.86 179.9 5.6 3.48 3.39 

  3.80 168.0 3.1 3.26 1.96 

6 Tb2(L135)3(DMF)7 
  4.81 179.8 6.2 3.48 3.32 

  3.81 168.1 3.9 3.27 1.96 
7 [UO2(L135)(DMF)]·(py)0.5(EtOH)0.5   3.64 133.4 6.3 3.63 0.31 
8 [Th(L135)(NO3)2(DMF)2]·(DMF)2   4.70 180.0 0.0 3.55 3.08 

  

a) the distance between the central carbon atoms of each ring b) the angle between the 

dipole vectors of each ring, which run through the central carbon atoms toward the 

nitrogen atoms c) the angle between the planes of each ring d) the average distance 

between the planes of each ring e) the slippage parameter describes the overlap of the two 

rings defined by the third side of the right triangle formed between the average 

perpendicular distance between the two rings and the line between the two central carbon 

atoms of each ring. 

 

Thermal Analysis. Thermal gravimetric analysis was performed on a TA 

Instruments SDT 2960 under a steady stream of dry air. Compound 1 showed a weight 

loss at 138 °C that corresponds with a loss of the interstitial solvents: 3.26 H2O and 1.79 
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DMF (15%, calcd. 17%). There is a second weight loss at 295 °C that corresponds with a 

loss of the coordination solvents: 3 H2O and 1 DMF (10%, calcd. 11%). The powder 

remains stable until decomposition to calcium carbonate at 477 °C. Compound 2 shows a 

weight loss at ca. 156 °C that corresponds with a loss of the coordinated H2O (5%, calcd. 

5%) and a weight loss at ca. 318 °C that corresponds with a loss of the coordinated DMF 

(6 %, calcd. 6%). The compound decomposes into barium oxide above 420 °C. 

Compounds 3 - 6 have identical TGA plots with two features of loss of coordinated DMF 

(17%, calcd. 18%) at ca. 161 and 275 °C, with decomposition at 387 °C. Compound 7 

shows a gradual weight loss between 80 and 412 °C that corresponds with a loss of the 

interstitial solvents (16%, calcd. 18%). The compound decomposes into uranium oxide 

after 412 °C. 

 

Figure 5.18. Thermal gravimetric analysis for compounds 1 – 7. 

 

Fluorescence.  Compounds 1, 2, 3, 6 and 8 exhibit solid-state luminescence 

dominated by the naphthalimide chromophore in the ligand (Figure 5.19).  Based on the 
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excitation spectra, an excitation wavelength of 400 nm was used for all compounds 

except 6 (Tb), where 507 nm excitation was needed.  A blue-green emission is observed 

where the maximum is slightly red-shifted with respect to the ligand in the case of the 

group 2 complexes 1 and 2 and slightly blue-shifted with respect to the ligand in the case 

of the lanthanum complex 3 and the thorium complex 8. The terbium compound, 6, had a 

similar broad emission as the other naphthalimide complexes, but red-shifted to the 

green-yellow region by ~75 nm.  

Sensitization does occur for the europium complex, 5, as seen in Figure 5.20. In a 

comparison to compound 3, which is purely naphthalimide based fluorescence, the blue-

green region decreases in intensity while the red region has intense well defined peaks 

correlating to Eu3+ emission.  

Complexes containing cerium(III) or uranyl(VI), compounds 4 and 7, have no 

solid state emission. 

 

Figure 5.19. Fluorescence spectra of compounds 1-3, 6, 8 and the protonated ligand 
H2L 135. 
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Figure 5.20. Fluorescence spectra of Eu2(L 135)3(DMF)4 (5) in blue and La2(L 135)3(DMF)4 
(3) in red. 

Discussion 

The new ligand L 135
2- (Scheme 5.1)  was synthesized and combined with a 

selection of metals from group 2 (Ca2+ and Ba2+), lanthanides (La3+, Ce3+, Eu3+ and Tb3+) 

and actinides (Th4+ and UO2
2+) in order to study the impact of cation size and charge on 

the coordination environment and overall topology of the metal complexes. The key 

difference between L 135
2- and similar MOF ligands used by others34–36 is the addition of 

the 1,8-naphthalimide supramolecular building block. This supramolecular tecton has 

shown a propensity to engage in π…stacking interactions that have a significant influence 

on the solid state architecture, generating SMOF structures. In our previous work with 

group 1, 2 and lanthanide metals using less rigid, enantiopure ligands, homochiral helices 
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were observed either in helical rod SBUs or in the supramolecular organization of 

individual SBU helicates.3,11,12,15 

The L 135
2- complexes of group 2 metals adopted two different SMOF structural 

types. Compound 1, [Ca4(L 135)4(H2O)8]·(H2O)9.5(DMF)2.6, has one-dimensional (1D) rods 

of edge-shared calcium cations that interact with parallel rods only through π…π stacking 

to generate a 3D SMOF structure. Both M and P helical rod-shaped SBUs are present in 

the racemic crystals. A similar compound [Ca(L ala)2(H2O)]·(H2O), synthesized from 

enantiopure ligands, has a 1D homochiral helical rod-shaped SBU.3 The SBUs from both 

calcium compounds have several points of connectivity with adjacent parallel SBUs via 

supramolecular nodes to form the 3D structure, which leaves channels occupied by 

disordered solvent.  

Compound 2, Ba(L 135)(H2O)1.5(DMF)0.5, also has a rod-shaped SBU, but they are 

covalently bridged by the ligands to form 2D sheets that interact with adjacent sheets 

through π…π stacking to generate a 3D SMOF structure. The sheet-like structure is 

similar to others formed with group 1 metals when combined with the L ser
- ligand, most 

notably K(L ser) and Cs(L ser).
11,18 Both L ser

- and L135
2- structures are formed by bridging 

edge-shared rod-shaped SBUs into sheets with naphthalimide rings on either side that 

interdigitate with adjacent sheets. A major difference is found in the supramolecular 

organization: the L ser
- sheets are held together by continuous π…π stacking whereas the 

L 135
2- sheets have a space between each synthon occupied by disordered solvent (…-ring-

ring-solvent-ring-ring-solvent-…). While the calcium and barium complexes are similar 

in their formation of edge-shared rod-shaped SBUs, the differences in 3D structure are 

most likely due to the larger ionic radius (1.14 Å compared to 1.49 Å) and coordination 
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number of barium. Barium also bares similarities to earlier sheet structures where the 

carbonyls of the naphthalimide ring are coordinated to the metal.11,18 

The L 135
2- ligand forms a series of isostructural compounds based on binuclear 

SBUs, with La3+, Ce3+, Eu3+ and Tb3+, despite the differences in cation size, ranging from 

1.03 Å in the case of lanthanum(III) to 0.92 Å in the case of terbium(III). We have 

previously reported that a series of complexes formed between L ser
- and a large range of 

lanthanides (La3+ through Dy3+) had the same trinuclear, carboxylate-bonded helical 

structures.15 In both complexes containing these ligands, we attribute the ability to 

prepare similar structures with metals of varying size to the accommodating and flexible 

nature of the π-stacking interactions. These lanthanide complexes form discrete SBUs as 

opposed to the 1D, rod-shaped SBUs that form for s-block metals. Interestingly, the 

structures of  3-6 contain our first case of C-H…π stacking between naphthalimide rings 

in SMOFs. These C-H…π stacking interactions occur within a sheet and do not disrupt the 

π…π stacking interactions between the sheets. 

Both actinide (UO2
2+ and Th4+) complexes form similar solid state structures with 

the L 135
2- ligand. These hard metals do not form edge- or corner-shared polyhedra and are 

exclusively bridged by carboxylates from the ligand into 1D ribbons, with π…π stacking 

generating only a 2D SMOF. Both metals have coordination environments with ligands 

other than L 135
2- that occupy part of the coordination sphere, O2- in the case of U6+ and 

NO3
- in the case of Th4+. A recently reported uranyl complex with a 1,3-

adamantanedicarboxylate ligand formed 1D ribbons similar to compound 7.24 The 

naphthalimide group affixed to the L135
2- allows the 1D ribbons to extend to a 2D 

material through supramolecular interactions. 
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The complexes 1, 2, 3 and 8 have luminescence spectra based on the 1,8-

naphthalimide moiety, with an intense broad emission in the blue-green region. While the 

group 2 complexes show the more typical slightly red-shifted spectra, the complexes with 

lanthanum(III) and thorium(III) have slightly blue-shifted spectra similar to previous 

complexes with L ser
-.3,11 The terbium(III) complex 6 has the most red-shifted (~75 nm) 

peak out of any synthesized complex containing the naphthalimide group. Only for the 

europium complex 5 does the naphthalimide ligand act as a sensitizer for metal-based 

luminescence. The charge transfer  between L 135
2- and Eu3+ is efficient enough that the 

ligand emission is decreased a significant amount while the europium emission is sharp 

and well-defined.  

The remaining two complexes, 4 and 7 (Ce3+ and UO2
2+ based), are non-emissive. 

We have previously reported the ability of the cerium cation to quench naphthalimide 

fluorescence.15 There have been a few reported cases of coordination polymers 

containing the uranyl cation and transition metals that have completely quenched 

fluorescence.24,25,31 The fluorescence quenching mechanism for our cerium(III) and 

uranium(VI) complexes is most likely due to a charge transfer relaxation similar to those 

observed with transition metals.37,38  
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